EGERTON

UNIVERSITY

UNIVERSITY EXAMINATIONS NJORO CAMPUS

SECOND SEMESTER, 2013/2014 ACADEMIC YEAR

SECOND YEAR EXAMINATION FOR THE DEGREE OF

BACHELOR OF SCIENCE IN WATER & ENVIRONMENTAL ENGINEERING

WEEN 216: SOIL MECHANICS II

STREAM:

TIME: 2 HRS

DAY: WEDNESDAY, 3-5 P.M.

DATE: 28/05/2014

INSTRUCTIONS

Answer question 1 and any other two questions Required charts are attached at the back of this question paper

Question1. (30 marks)

- (a) A saturated clay specimen was consolidated in a shear box at a vertical stress of 80kN/m^2 . The specimen was then sheared rapidly and the maximum shear stress observed was 50kN/m^2 . The effective stress shear parameters of the clay were C' = 10kN/m^2 and $\phi = 28^\circ$
 - (i) What was the excess pore water pressure on the shear surface at failure? (3marks)
 - (ii) A sample of this soil is tested in a Triaxial test at a cell pressure of 300kN/m².

 Determine the major principal stress at which the sample will fail. (3marks)
- (b) Determine the vertical stress increase at a depth of 3 m below corner X on the L-shaped foundation shown in Figure Q1B, when the foundation is subjected to a uniform pressure of 150 kPa. (6marks)

Fig. Q1B

- (c) A flexible raft foundation with plan dimensions $24m \times 12m$ is founded 4m below the ground level. At this particular site, the soil profile consists of 10m saturated clay of $E_u = 20MN/m^2$ underlain by a further 20m of saturated clay of $E_u = 40MN/m^2$. The soil layers rest on a rigid rock stratum. Estimate the average immediate settlement beneath the foundation if the net increase in stress is $100kN/m^2$. (7marks)
- (d) Use Terzaghi's theory to determine the width of a square foundation required to carry a total load of 294kN, if the foundation is placed at a depth of 1.0m in sand of unit weight 20kN/m^3 and angle of shearing resistance $\phi = 35^0$. A factor of safety of 3 against shear failure is specified. (5marks)
- (e) A clay layer 3m thick is sandwiched between a layer of sand and impervious bed rock. The total consolidation of the layer is calculated to be 20mm. If the coefficient of consolidation $Cv = 0.96 \text{mm}^2/\text{min}$, calculate the time required for

(i) 50% consolidation settlement.

(3.5marks)

(ii) A settlement of \$4mm.

(2.5marks)

Question2. (20 marks)

- (a) A group of 9 piles is driven to a depth of 9m in a deep deposit of soft clay. Each of the piles is 30cm in diameter and the piles are arranged in a square array at 90cm centre to centre. The clay has cohesion of 45kN/m² and the adhesion factor is 0.75. If a factor of safety of 2.5 is applied,
 - (i) Determine the capacity of the pile group based on single pile capacity. (6marks)
 - (ii) Determine the block capacity of the piles. (5marks)
- (b) A square pile 0.2m x 0.2m is driven through 5m of sand into underlying gravel. The sand has an average SPT $\overline{N} = 20$ and the gravel has SPT $\overline{N} = 40$. Given

$$q_b = \frac{40\overline{N}D}{B} \le 400\overline{N} \qquad (kN/m^2)$$

$$f_s = \overline{N} \quad (kN/m^2)$$

- (i) Determine the depth of penetration into the gravel required to give sufficient end bearing capacity. (2marks)
- (ii) Determine the total allowable load that can be carried by the pile. (use F=3). (7 marks)

Question3. (20 marks)

lam.

Figure Q3, (which is drawn to scale), shows a 20m high slope of 35°, in soil with the following properties:

Angle of shearing resistance

 $\phi = 20^{\circ}$

Cohesion

 $C = 20kN/m^2$

(b) Estimate the factor of safety along the potential failure surface shown (ignore any tension

Unit weight

 $\gamma = 19.3 \text{kN/m}^3$

(a) Estimate the depth to which tension cracks could develop at the slope crest. (3marks)

20 = 2C

Question 4 (20marks)

Figure Q4 shows a retaining wall in which the materials properties are as follows: -

Material	Unit weight (KN/m ²)	Angle of shearing resistance φ	Cohesion (KN/m ²)
Soil 1	20	36	0
Soil 2	18	30	0
Concrete	24		

cracks). The weight of each slice is given in the figure.

Determine the factor of safety against

- (a) Overturning.
- (b) Sliding along the base.

(15marks) (5marks)

(17marks)

Fadum charts

Terzaghi's bearing capacity factors

φ	N _c	Nq	Nγ	ф	N _c	Nq	Nγ	φ.,	N _c	Nq	Nγ
0	5.7	1.0	0.0	17	14.6	5.45	2.18	34	52.64	36.5	38.04
1	6.0	1.1	0.0	18	15.1	6.04	2.59	35	57.75	41.44	45.41
2	6.3	1.2	0.0	19	16.6	6.7	3.07	36	63.53	47.16	54.36
3	6.62	1.4	0.1	20	17.7	7.44	3.64	37	70.01	53.8	65.27
4	6.97	1.5	0.1	21	18.9	8.26	4.31	38	77.50	61.55	78.61
5	7.34	1.6	0.1	22	20.3	9.19	5.09	39	85.97	70.61	95.03
6	7.73	1.8	0.2	23	21.8	10.2	6.00	40	95.66	81.27	115.3
7	8.15	2.0	0.3	24	23.4	11.4	7.08	41	106.8	93.85	140.5
8	8.60	2.2	0.4	25	25.1	12.7	8.34	42	119.7	108.8	172.0
9	9.09	2.4	0.4	26	27.1	14.2	9.84	43	134.6	126.5	211.6
10	9.61	2.7	0.6	27	29.2	15.9	11.6	44	152.0	147.7	261.6
11	10.2	3.0	0.7	28	31.6	17.8	13.7	45	172.3	173.3	325.3
12	10.8	3.3	0.9	29	34.2	20.0	16.2	46	196.2	204.2	407.1
13	11.4	3.6		30	37.2	22.5	19.1	47	224.6	241.8	512.8
14	12.1	4.0		31	40.4	25.3	22.7	48	258.3	287.9	650.7
15	12.1	4.5		32	44.0	28.5	26.9	49	298.7	344.6	832.0
	13.7	4.9		33	48.1	32.2	31.9	50	247		1073
16	13.7	4.7	1.0	33	10.1						-