

# UNIVERSITY EXAMINATIONS

# **NJORO CAMPUS**

#### SECOND SEMESTER 2011/2012

# THIRD YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN AGRICULTURAL ENGINEERING

# **AGEN 356: HYDROLOGY**

**STREAM:** 2009 (Y3) AGEN

**TIME: 2 HOURS** 

**DAY/TIME:** FRIDAY, 08.30 – 10.30 AM

**DATE:** 04/05/2012

#### **INSTRUCTIONS:**

- 1. The paper consists of FIVE (5) questions.
- 2. Attempt QUESTION ONE and ANY OTHER THREE questions.
- 3. All questions carry equal marks.
- 4. Marks for each question are shown in parenthesis.
- 5. Use neat and clear sketches where necessary
- **6.** Observe examination regulations as outlined on the answer booklet
- 7. EACH QUESTION SHOULD BE STARTED ON A NEW PAGE.

#### **QUESTION ONE (COMPULSORY)**

- (a) Write short notes on the following principles and terms as used in engineering hydrology
  - (i) Double mass curve
  - (ii) Rainfall hyetograph
  - (iii) Isohyets
  - (iv) Unit hydrograph
  - (v) Cone of depression.

(10 marks)

(b) Compute the average precipitation by arithmetic average method and Thiessian polygon method from the following data presented in Table 1. (4 marks)

Table 1: Precipitation data

| Station Number | Precipitation (mm) | Area (m²) |  |  |
|----------------|--------------------|-----------|--|--|
| 1              | 30.8               | 45        |  |  |
| 2              | 34.6               | 40        |  |  |
| 3              | 32.0               | 30        |  |  |
| 4              | 24.6               | 38        |  |  |

- (c) A well 3 meters in diameter has its normal water level 3 meters below the ground level. By pumping water level in the well is depressed to 10 metres below the ground level. In 4 hours the water rises by 5 meters. Calculate the specific yield of the well. (5 marks)
- (d) Estimate the return period of a rainfall whose probability of exceedence is 5%. Also determine the probability that this rainfall may occur in the next 5 years. (6 marks)

### **QUESTION TWO**

- (a) Define the following Hydrological terms:
  - (i) Radius of influence
  - (ii) Aquifer
  - (iii) Extreme event
  - (iv) Hydrologic budget.
  - (v) Recession curve.

(10 marks)

- (b) Describe the various methods of measuring the velocity of a stream. (6 marks)
- (c) During a profile survey, the highest point of a catchment in Nakuru County was 987 m above the lowest point which was 2435.2 m away. Estimate the time of concentration of a storm with a rainfall intensity of 4 mm/hr for sufficient runoff to be generated at the outlet of the catchment. (5 marks)
- (d) Using mathematical equations show the difference in ground water flow between:
  - (i) Pore water velocity, and
  - (ii) Average linear velocity.

(4 marks)

# **QUESTION THREE**

- (a) What are the factors that affect the runoff from a catchment? (10 marks)
- (b) List THREE most commonly used methods of boring a tube well. (3 marks)
- (c) The data given in Table 2 presents observed flows from a storm of six- hour duration rainfall at a gauging station draining an area of 90 km². Derive the Direct Runoff Ordinates (DRO) and Unit hydrograph Ordinates (UH).
  (8 marks)

Table 2: River flow data

| Time<br>(h)                   | 0    | 3    | 6    | 9    | 12   | 15   | 18   | 21   | 24   | 27   | 30   | 33   | 36   | 39   | 42   |
|-------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Flow (m <sup>3</sup> /s)      | 15.3 | 36.0 | 65.7 | 84.7 | 77.6 | 60.3 | 42.5 | 33.2 | 27.8 | 24.4 | 21.3 | 19.0 | 17.3 | 16.4 | 16.2 |
| Base flow (m <sup>3</sup> /s) | 15.3 | 14.5 | 13.6 | 12.8 | 13.3 | 13.6 | 14.0 | 14.2 | 14.5 | 14.7 | 15.0 | 15.3 | 15.6 | 15.9 | 16.2 |

(d) Briefly outline FOUR Concepts of probability in hydrology.

(4 marks)

#### **QUESTION FOUR**

- (a) Define the following terms as used in hydrology
  - (i) Stream gauging.
  - (ii) Overland flow.
  - (iii) Direct runoff.

(3 marks)

- (b) A tube well is driven in a confined aquifer of 24 m thickness. The aquifer is met 25 m below a ground level. The static water table is 15 m below the ground level. The discharge of the tube well is found to be 6000 m³/day when depression head is 12.25 m. Permeability is 24.50 m/day. Find the diameter of the tube well. Take radius of circle of influence as 300 m.
  (12 marks)
- (c) During a calibration exercise of a flow measurement structure, flow rates of  $54.58 \text{ m}^3/\text{s}$  and  $68.33 \text{ m}^3/\text{s}$  at stages 6.1 m and 8.3 m, respectively were recorded. Establish the rating equation of the structure,  $Q = aH^c$ , where, a and c are the constants to be established. (4 marks)
- (d) Outline the procedure followed while using Gumbel method of analyzing extreme events.

  (6 marks)

#### **QUESTION FIVE**

- (a) (i) Differentiate between the Hydrograph and the rating curve as used in engineering hydrology. (2 marks)
  - (ii) Explain how the field of hydrology is key in mitigating of some of today's climate related pressing issues. (3 marks)
- (b) Derive a mathematical expression for groundwater radial flow in an unconfined aquifer and state Dupuit-Forcheimer-assumption. (10 marks)
- (c) Why is hydrologic frequency analysis important to a water resources engineer?

(2 marks)

(d) Data given in the Table 3 below were obtained at a river flow measuring structure. If the current meter equation is V = 0.032 + 0.32N, compute the discharge (Q) using mid-section method.
(8 marks)

Table 3: Discharge data

| Distance                 |   |      |      |      |      |      |      |      |      |      |      |     |
|--------------------------|---|------|------|------|------|------|------|------|------|------|------|-----|
| from left                | 0 | 2    | 4    | 6    | 9    | 12   | 15   | 18   | 20   | 22   | 23   | 24  |
| Bank (m)                 |   |      |      |      |      |      |      |      |      |      |      |     |
| Depth (m)                | 0 | 0.50 | 1.10 | 1.95 | 2.25 | 1.85 | 1.75 | 1.65 | 1.50 | 1.25 | 0.75 | 0.0 |
| Number of<br>Revolutions | 0 | 90   | 85   | 130  | 140  | 118  | 110  | 105  | 90   | 80   | 75   | 0   |
| Time (s)                 | 0 | 165  | 120  | 120  | 120  | 120  | 120  | 120  | 120  | 120  | 135  | 0   |

\*\*\*\*\*\*\*\*\*\*\*