

UNIVERSITY EXAMINATIONS

NJORO CAMPUS

SECOND SEMESTER 2011/2012

FOURTH YEAR EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN AGRICULTURAL ENGINEERING

AGEN 432: FARM MACHINERY II

STREAM: 2008 (Y4) AGEN

TIME: 2 hours

DAY/TIME: Monday, 03.00 – 05.00 pm

DATE: 07/05/2012

INSTRUCTIONS:

- 1. The paper consists of THREE (3) questions.
- 2. Attempt ALL QUESTIONS.
- 3. Marks for each question are shown in parenthesis.
- 4. In case of calculations, show all the working steps as well as the relevant units and indicate any assumptions made.
- 5. EACH QUESTION SHOULD BE STARTED ON A NEW PAGE.

QUESTION ONE

(a) State the basic processes of a combine harvester.

(2 marks)

(b) With the aid of a sketch, describe the crop flow through a combine harvester.

(10 marks)

- (c) Define the following parameters used in the determination of the performance of the threshing mechanism of a combine harvester.
 - (i) Threshing efficiency
 - (ii) Separation efficiency
 - (iii) Grain damage.

(3 marks)

- (d) How do the following affect the parameters in (c) above? Give reason (s) for your answer
 - (i) Cylinder speed

(c) How do the following affect the parameters in (c) above? Give reason (s) for your answer		
(i)	Cylinder speed	
(ii)	Concave length	
(iii)	Cylinder / concave gap	
(iv)	Material feed rate	
(v)	Crop condition	
		(10 marks)
(d) (i) Sta	ate one parameter used in the evaluation of the straw walkers?	
(ii) How is the stated parameter in e(i) above affected by material feed rate?		
		(2 marks)
(e) (i) Describe the various losses relating to harvesting of barley using a combine harvester.		
Hov	w are these losses expressed?	(6 marks)
(ii) How is the header losses of a combine harvester determined in the field? (7 marks)		
OHEST	ION TWO	
QUEST.		
(a) (i) With the aid of a sketch, describe the principle of operation of a precision chop forage		
ha	rvester.	(11 marks)
(ii) Ho	ow is the length of chop varied on a precision chop forage harvester?	(2 marks)
(iii) Explain why actual chop lengths of some particles from a forage harvester are longer		
tha	an calculated lengths.	(2 marks)
(b) What i	is the function of the following hay making equipments?	
(i)	Tedder	
(ii)	Turner	
(iii)	Crimper	
		(6 marks)
(c) (i) With the aid of a sketch, describe the crop flow through a rectangular pick-up baler.		
(ii) W	hat determines the density of rectangular bales?	(13 marks)

- (d) The following information refers to a baler forming rectangular bales of mass 20 kg and 200 kg/m³ density.
 - Depth of bale chamber 0.36 m
 - Width of bale chamber 0.46 m
 - Thickness of each compressed hay slice 0.2 m
 - Baler crank speed 90 rpm

Determine:

- (i) Material feed rate to the baler
- (ii) Baling rate (bales / hour)
- (iii) Length of each bale

(6 marks)

QUESTION THREE

(a) Describe the construction and operation of hammer mills

(6 marks)

(b) (i) What are the advantages and disadvantages of the mills in (a) above?

(4 marks)

- (ii) What happens to the milling rate as the moisture content of grains decrease? (1 mark)
- (iii) What determines the fineness of grinding in a hammer mill?

(1 mark)

(c) With the aid of a sketch, describe the principle of operation of a cyclone separator.

(5 marks)

(d) Show that for a bucket elevator the speed of the head pulley is given by the relationship

$$n = \frac{1}{2\pi} \sqrt{\frac{g}{r}}$$

Where: n = speed of head pulley

r = radius to centre of rotation of material in bucket

g = acceleration due to gravity

(5 marks)

- (e) A pneumatic conveyor is to convey barley to a vertical height of 8 m and through a horizontal distance of 20 m at a rate of 20,000 kg/hr. The transport line has two 90 bends and its diameter is 12.7 cm. Calculate
 - (i) The total pressure drop
 - (ii) The blower power requirement

(20 marks)

APPENDIX I

 $\rho = density of air = 1.2 kg/m^3$

V = Velocity of air m/s = 2.5 m/s

L = Length of conveying duct (m)

D = diameter of duct (m)

R_e = Reynolds number

 $\Delta_z = \text{lift height (m)}$

 $\Phi = \frac{\text{mass flow of solids}}{\text{mass flow of air}} = 15$ $\mu = \text{viscosity of air} = 10^{-5} \text{Ns/m}^2$

Line pressure loss

$$\Delta P_L = \lambda_L \frac{\rho}{2} v^2 \frac{L}{D}$$

and $\frac{\lambda_L}{4} = 0.0014 + 0.125 \text{Re}^{-0.32}$

$$R_e = \rho VD$$

Acceleration pressure drop

$\Delta P_{A} = \Phi_{m} V \rho c$

$$\frac{C}{V}$$
 = 1- 0.68d $^{0.92}$ $\rho_{\rho}^{0.5}$ $\rho^{-0.2}$ D $^{0.54}$

C = Velocity of solid particles

 ρ_{ρ} = density of solid particles

 $= 1330 \text{ kg/m}^3$

d = equivalent particle diameter = $4.05 \times 10^{-3} \text{ m}$

Pressure drop due to solids

$$\Delta P_s = \Phi_m \lambda_s \frac{\rho}{2} v^2 \frac{L}{D}$$

$$\lambda_s \ = \ \underbrace{0.0285 \, \sqrt{gD}}_c$$

Pressure drop due to lift height

$$\Delta P_{g} = \rho^{*} g \Delta_{z}$$

$$p^{*} = \frac{\Phi_{m} vp}{c}$$

$$\rho^{*} = \text{apparent bulk density}$$

$$\Delta_{z} = \text{lift height}$$

Pressure drop to bends

Equivalent length
$$L_e = \frac{KD}{\lambda_L}$$

$$K = 0.9$$

 $K = fitting less coefficient$

Pressure drop due to solids

$$\triangle$$
 P_{b, solids} = 0.245

$$\left[\frac{M}{\rho V D^2}\right]^{1.267} \qquad \left[\frac{R}{D}\right]^{-0.26}$$

Take
$$\frac{R}{D} = 5$$

Power
$$\frac{\Delta P Q}{\eta_b}$$

and
$$\eta_b=60\%$$