

UNIVERSITY

EXAMINATIONS UNIVERSITY

NJORO CAMPUS

SECOND SEMESTER 2012/2013

FOURTH YEAR EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN WATER AND ENVIRONMENTAL ENGINEERING

AGEN 455: IRRIGATION AND DRAINAGE ENGINEERING I

STREAM: 2008 (Y5) B. SC. WEEN

TIME: 2 hours

DAY/TIME: MONDAY, 08.30 – 11.30 am

DATE: 27-05-2013

INSTRUCTIONS:

- 1. The paper contains FOUR (4) questions.
- 2. Attempt QUESTION ONE and any other TWO (2)
- 3. All questions carry equal marks.
- 4. Show all workings for each question
- 5. Carefully read the instructions on the answer booklet
- 6. EACH QUESTION SHOULD BE STARTED ON A NEW PAGE.

QUESTION ONE (30 marks) - COMPULSORY

- (a) Briefly describe the following components of Irrigation Water Management:
 - Conveyance system management.
 - Land Management (ii)
 - (iii) Rain water Management
 - (iv) Conjunctive use of water
 - Sodium salts in irrigation water

(10 marks)

(b) After how many days will a farmer supply water to soil in order to ensure sufficient irrigation of the given crop, if field capacity of the soil = 30%, permanent wilting point = 12%, density of soil = 1.25 gm/cm³, effective depth of root zone = 60 cm, and daily

AGEN 455 (B. SC. WEEN)

consumptive use of water for the given crop = 12.5 mm. Assume the readily available moisture is 80% of the available moisture. (10 marks)

- (c) A sprinkler system is designed for day time irrigation in a temperate climate where winds are moderate. The system design efficiency is estimated as 70%. The crop is cotton and its net water requirement (NWR) is 75 mm. Determine:
 - (i) The additional amount of water applied in excess of net water requirement (NWR) (2 marks)
 - (ii) The duration of irrigation, assuming the water is applied at a rate of 7.2 mm/hr (2 marks)
 - (iii) Gross water requirement (GWR) (2 marks)
 - (iv) Using a clearly labeled sketch, explain the pattern of moisture absorption from the root zone which the crop roots system develops to derive water for growth.

 (4 marks)

QUESTION TWO (20 marks)

(a) Explain why excessive water application in irrigation is a poor practice. (3 marks)

(b) The following information presented in the table below was obtained for a closed-end border irrigation system of length 210 m and 18 m width. Volume of water applied to the boarder was 565 m³ while irrigation requirement was 110 m.

Distance (m)	0	30	60	90	120	150	180	210
Depth infiltrated (mm)	135	137	138	141	150	164	167	165

Calculate the following:

- (i) Distribution uniformity
- (ii) Application efficiency
- (iii) water requirement efficiency
- (iv) Deep percolation efficiency. (8 marks)
- (c) Define the following terms as used in irrigation and drainage engineering:
 - (i) Irrigation period. (2 marks)
 - (ii) Superfluous water. (2 marks)
 - (iii) Saturation capacity. (2 marks)
- (d) State three (3) important parameters that influence the porosity of a soil. (3 marks)

AGEN 455 (B. SC. WEEN)

QUESTION THREE (20 marks)

- (a) Explain how voids in the soil influence crop production. (2 marks)
- (b) The Kenya government has embanked on broad government initiatives for enhanced irrigation development. State some of these initiatives. (7 marks)
- (c) Name and give examples of the classification of drains according to their function.

(5 marks)

(d) A tile drain system draining 10 ha flows at a design capacity for three days following a storm. If the system is designed using a drainage coefficient of 2.0 cm, how much water will be removed during this period?

(6 marks)

QUESTION FOUR (20 marks)

- (a) Define the following terms:
 - (i) Base period.
 - (ii) Duty.
 - (iii) Irrigation potential.
 - (iv) Threshold salinity.

(8 marks)

- (b) What is the difference between crop water requirement and irrigation water requirement?

 (4 marks)
- (c) Determine the uniformity of coefficient for depths of penetration of five points in a field 1.0, 0.75, 0.60, 0.50, and 0.40 m. (8 marks)
