

MASENO UNIVERSITY

UNIVERSITY EXAMINATIONS 2012/2013

THIRD YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND TECHNOLOGY (MAIN CAMPUS)

SCS 304: AUTOMATA THEORY

Date: 13th December, 2012

Time: 8.30 - 10.30 a.m.

INSTRUCTIONS:

- · Answer ALL questions in SECTION A and any other TWO questions from SECTION B.
- Write your registration number on all sheets of the answer book used.
- ◆ Use a NEW PAGE FOR EVERY QUESTION ATTEMPTED, and indicate the question number on the space provided on each page of the answer sheet.

SECTION A ANSWEW ALL QUESTIONS IN THIS SECTION.

QUESTION ONE

a. Let $G = (N, \sum S, P)$ be the grammar defined by $N = \{S, A, B\}, \sum = \{a, b\}$ and P be the set of productions

 $S \rightarrow ABABABA$

 $A \rightarrow Aa$

 $A \rightarrow \lambda$

 $B \rightarrow b$.

Show that the expression for the language generated by G Is a*ba*ba*ba*. A language consisting of all words containing exactly three bs. (5 MARKS)

b. Let $G = (N, \sum, S, P)$ be the grammar defined by $N = \{S, A, B, C\}, \sum = \{a, b, c\}, \text{ and } P \text{ be}$ the set of productions

 $S \rightarrow aA$

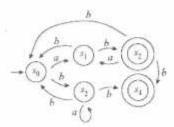
 $\begin{array}{l} A \rightarrow aA \\ S \rightarrow bB \end{array}$

 $B \rightarrow Bb$

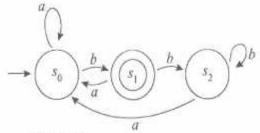
 $A \rightarrow cC$

 $C \rightarrow cC$

 $B \rightarrow aA$

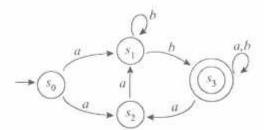

 $C \rightarrow \lambda$

DRAW a corresponding automaton for this grammar.

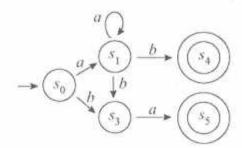

(5 MARKS)

 Construct a grammar which generates the language L described by the expression (ab)* V(ac)*.

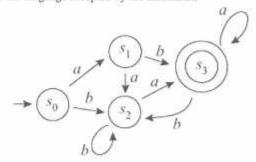
d. Construct a grammar which generates the language accepted by the automatons below . (5 MARKS)


e. Which of the following words are accepted by the automaton? Below (5 MARKS)

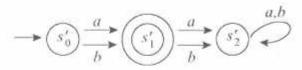
- (a) aaabb.
- (b) abbbabbb.
- (c) bababa.
- (d) aaabab.
- (e) bbbabab.
- f. Find a deterministic automaton which accepts the language expressed by (a*(ba)*bb*a)*.
 (5 MARKS)


Question two

- a. Let $\Sigma = \{a, b\}$.
 - (i) Give a regular expression for the set of all elements of ∑* containing exactly two bs or exactly two as.
 (2 MARKS)
 - (ii) Give a regular expression for the set of all elements of ∑ containing an even number of bs.(2 MARKS)
 - (iii)Give a regular expression for the set of all elements of ∑* beginning and ending with a and containing at least one b. (2 MARKS)
- Find regular sets corresponding to the following expressions. If the set is infinite, list ten elements in the set: (6 MARKS)
 - a. bc(bc)*
 - b. (a Vb* V i) (cVd*)
 - c. (a Vbc Vd)+
- c. Construct a deterministic automaton which accepts the same language as the nondeterministic automaton. Below. Describe the language that is accepted by both atomatons.
 (8 MARKS)



Question three


 Using the following automaton below, use Kleens theorem to derive a regular expression that is accepted by the automaton (8 marks)

b. Let L1 be the language accepted by the automaton

and L_2 be the language accepted by the automaton

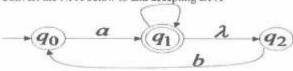
(a) Construct the automaton which accepts the language L1 U L2.

(4 marks)

(b) Construct the automaton which accepts the language L1L2...

(4 marks)

(c) Construct the automaton which accepts the languages L₁* and the automaton which accepts L_2 . (4 marks)


Question Four (20 Marks)

(a) Convert the following Regex (0+1)*1(0+1) to a epsilon-NFA

(5 MARKS)

(b) Convert the NFA below to and accepting DFA

(5 MARKS)

- a) Derive the following expression x * (x + y000) from E in the grammar below (10 MARKS)
 - 1. E+1
 - 2. E≯ E+E
 - 3. E> E*E

 - 4. E > (E)

 - 7. 1 → lx
 - 1 → Iy
 - 9. 1 > 10
 - 10.1 > 11

Question Five (20 Marks)

a) Construct the left most derivation of a tree that derives the expression in 4c above

(8 MARKS)

b) Construct the parse trees for the expression b + b * b and derive the ambiguity in the expression

(7 MARKS)

c) Consider L $\{a^n b^n c^m d^m : n \ge 1, m \ge 1\} \cup \{a^n b^m c^m d^n : n \ge 1, m \ge 1\}$

A grammar for L is:

- S AB/C
- A → aAb/ab
- B → cBd/cd

C → aCd / aDd
D → bDc / bc

Show that L is ambiguous when passing the string aabbccdd, by drawing the parse trees and the (5 MARKS) two leftmost derivations