

KIMATHI UNIVERSITY COLLEGE OF TECHNOLOGY University Examination 2010/2011

SECOND YEAR **SUPPLEMENTARY/SPECIAL** EXAMINATION FOR BACHELOR OF SCIENCE IN <u>ACTUARIAL SCIENCE</u>

SMA 2370 : CALCULUS IV

DATE: 8TH November 2010 TIME: 8.30 AM – 10.30 AM

INSTRUCTIONS:

- (a) Answer Q1 (Compulsory) and ANY OTHER TWO (2) questions.
- (b) DO NOT answer more than [3] questions in total. Use of sketches where appropriate

QUESTION ONE-30 marks-COMPUSORY

(a) Figure out and sketch the graphs of the entities below in \Re^3 : (i) $z = \sqrt{4 - x^2 - y^2}$	(4 marks)
(ii) $2x + 3y + 4z - 12 = 0$	(4 marks)
(b) Find the directional derivative of the scalar function $\Phi(x, y, z) = x^2 yz = xyz + 4xz^2$ at the	
point (1,2,3) in the direction $2\vec{i} + \vec{j} + \vec{k}$	(3 marks)
(c) (i) Prove the property of orthogonal functions that $\int_{-\frac{T}{2}}^{\frac{T}{2}} \sin^2(m\omega_0 t) dt = \frac{T}{2}$	(3 marks)
(ii) Find the period of the function $f(t) = (10\cos t)^2$	(3 marks)
(d) Establish whether the function $f(t) = \int_{1}^{\infty} \sin(\frac{1}{t}) dt$ converges or diverges	(4 marks)
(e) Find the equation of the tangent line and normal plane to the space curve given param $x = t - \cos t$, $y = 3 + \sin 2t$, $z = 1 + \cos 3t$	netrically as (6 marks)
Along the straight line joining the points (0,0,0) and (1,1,1) find the line integral $\int \vec{f}$.	$d\vec{r}$ given that

$$\vec{f} = (3x^2 + 6y)\vec{i} - 14yz\vec{j} + 20xz^2\vec{k}$$
(3 marks)

QUESTION TWO-20 marks-OPTIONAL

(a) Sketch the square function of the square function below

$$f(t) = -2 - 1 < t < 0$$

$$f(x) = 2 \quad 0 < t < 1$$
 (3 marks)

$$f(t) = f(t+2)$$

its Fourier Series (6 marks)

And determine its Fourier Series

- (b) Given the scalar operator $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$, find $\nabla^2(\frac{1}{r})$ where $r = \sqrt{x^2 + y^2 + z^2}$ i.e. magnitude of $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$. (6 marks)
- (c) Find the turning points of the function $u(x, y, z) = x^2 + 2y^2 + z$ subject to the constraint $\Phi(x, y, z) = x^2 - z^2 - 2 = 0$ (5 marks)

QUESTION THREE-20 marks- OPTIONAL.

- (a) Evaluate $\iint \vec{B} \cdot \vec{N} \, dS$ where S is the outward surface of the cube bounded by x = 0, x = 1, y = 0, y = 1 and z = 0, z = 1 without using Gauss' Divergence Theorem (10 marks)
- (b) Now use Gauss' Theorem to establish the result of (a) above (5 marks)

(c) Optimize $x^2 e^y$ subject to $x^2 + y^2 = 3$ using Lagrange's multipliers (5 marks)

QUESTION FOUR-20 marks-OPTIONAL

- (a) Convert the equations (i) $4x^2 + 4y^2 z^2 = 0$ and (ii) $z = 2\sqrt{x^2 + y^2}$ into polar coordinates (4 marks)
- (b) A solid is formed by the hemisphere $z = \sqrt{4 x^2 y^2}$ on the sides and the cone $z = x^2 + y^2$ drilled from the center. Use spherical coordinates (or otherwise) to find its volume (6 marks)
- (c) Use Green's Theorem to evaluate $\oint_C (y \sin x) dx + \cos x dy$ given that C is the path of the triangle

PQR,
$$P(0,0), Q(\frac{\pi}{2}, 0).R(\frac{\pi}{2}, 1)$$
. (5 marks)

(d) Evaluate $\iiint_{V} \nabla \cdot \vec{f} \, dv$ given that $\vec{f} = (2y - 3z)\vec{i} + 2xy\vec{j} - 4x\vec{k}$ and the implied volume is bounded by x = 0, x = 2, y = 0, y = 6 and $z = x^2, z = 4$ (5 marks)

QUESTION FIVE-20 marks- OPTIONAL

(a) Given $z = x^2 - y^2$, $x = r \cos \theta$, $y = r \sin \theta$, determine $z_r, z_\theta, z_{\theta\theta}$ and $z_{r\theta}$ (5marks) (ii) Find and classify all the turning points of $f(x, y) = 2x^2 - y^3 - 2xy$ (5 marks)

(b) Given vector
$$\vec{X} = z(x+y^2)\vec{i} + z(z+x^2)\vec{j} - x^2y(x+y)\vec{k}$$
 prove that \vec{X} . curl $\vec{X} = 0$ (5 marks)

(c) Prove the MVT, i.e. $\int_{a}^{b} f(x)dx = (b-a)f(c) \text{ and find the mean value of } \int_{2}^{5} x^{2}dx, x \in [2,5]$ (5 marks)

Best wishes, sincerely!