KIMATHI UNIVERSITY COLLEGE OF TECHNOLOGY University Examination 2010/2011

SECOND YEAR SUPPLEMENTARY/SPECIAL EXAMINATION FOR BACHELOR OF SCIENCE IN ACTUARIAL SCIENCE

## SMA 2370 : CALCULUS IV

DATE: $8^{\text {TH }}$ November 2010
TIME: 8.30 AM - 10.30 AM

## INSTRUCTIONS:

(a) Answer Q1 (Compulsory) and ANY OTHER TWO (2) questions.
(b) DO NOT answer more than [3] questions in total. Use of sketches where appropriate

## QUESTION ONE-30 marks-COMPUSORY

(a) Figure out and sketch the graphs of the entities below in $\mathfrak{R}^{3}$ : (i) $z=\sqrt{4-x^{2}-y^{2}} \quad$ (4 marks)
(ii) $2 x+3 y+4 z-12=0 \quad$ ( 4 marks)
(b) Find the directional derivative of the scalar function $\Phi(x, y, z)=x^{2} y z=x y z+4 x z^{2}$ at the point $(1,2,3)$ in the direction $2 \vec{i}+\vec{j}+\vec{k}$
(3 marks)
(c) (i) Prove the property of orthogonal functions that $\int_{-\frac{T}{2}}^{\frac{T}{2}} \sin ^{2}\left(m \omega_{0} t\right) d t=\frac{T}{2}$
(3 marks)
(ii) Find the period of the function $f(t)=(10 \cos t)^{2}$
(3 marks)
(d) Establish whether the function $f(t)=\int_{1}^{\infty} \sin \left(\frac{1}{t}\right) d t$ converges or diverges
(4 marks)
(e) Find the equation of the tangent line and normal plane to the space curve given parametrically as

$$
x=t-\cos t, y=3+\sin 2 t, \quad z=1+\cos 3 t
$$

(6 marks)
Along the straight line joining the points $(0,0,0)$ and $(1,1,1)$ find the line integral $\int_{C} \vec{f} . d \vec{r}$ given that $\vec{f}=\left(3 x^{2}+6 y\right) \vec{i}-14 y z \vec{j}+20 x z^{2} \vec{k}$
(3 marks)

## QUESTION TWO-20 marks-OPTIONAL

(a) Sketch the square function of the square function below

$$
\begin{aligned}
& f(t)=-2 \quad-1<t<0 \\
& f(x)=2 \quad 0<t<1 \\
& f(t)=f(t+2)
\end{aligned}
$$

(3 marks)

And determine its Fourier Series
(b) Given the scalar operator $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$, find $\nabla^{2}\left(\frac{1}{r}\right)$ where $r=\sqrt{x^{2}+y^{2}+z^{2}}$ i.e. magnitude of $\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}$.
(6 marks)
(c) Find the turning points of the function $u(x, y, z)=x^{2}+2 y^{2}+z$ subject to the constraint $\Phi(x, y, z)=x^{2}-z^{2}-2=0$

## QUESTION THREE-20 marks- OPTIONAL.

(a) Evaluate $\iint \vec{B} \cdot \vec{N} d S$ where S is the outward surface of the cube bounded by $x=0, x=1, y=0, y=1$ and $z=0, z=1$ without using Gauss' Divergence Theorem
(10 marks)
(b) Now use Gauss' Theorem to establish the result of (a) above
(c) Optimize $x^{2} e^{y}$ subject to $x^{2}+y^{2}=3$ using Lagrange's multipliers

## QUESTION FOUR-20 marks-OPTIONAL

(a) Convert the equations (i) $4 x^{2}+4 y^{2}-z^{2}=0$ and (ii) $z=2 \sqrt{x^{2}+y^{2}}$ into polar coordinates (4 marks)
(b) A solid is formed by the hemisphere $z=\sqrt{4-x^{2}-y^{2}}$ on the sides and the cone $z=x^{2}+y^{2}$ drilled from the center. Use spherical coordinates (or otherwise) to find its volume
(6 marks)
(c) Use Green's Theorem to evaluate $\oint_{C}(y-\sin x) d x+\cos x d y$ given that C is the path of the triangle $\mathrm{PQR}, P(0,0), Q\left(\frac{\pi}{2}, 0\right) \cdot R\left(\frac{\pi}{2}, 1\right)$.
(5 marks)
(d) Evaluate $\iiint_{V} \nabla \cdot \vec{f} d v$ given that $\vec{f}=(2 y-3 z) \vec{i}+2 x y \vec{j}-4 x \vec{k}$ and the implied volume is bounded by $x=0, x=2, y=0, y=6$ and $z=x^{2}, z=4$ (5 marks)

## QUESTION FIVE-20 marks- OPTIONAL

(a) Given $z=x^{2}-y^{2}, x=r \cos \theta, y=r \sin \theta$, determine $z_{r}, z_{\theta}, z_{\theta \theta}$ and $z_{r \theta}$
(5marks)
(ii) Find and classify all the turning points of $f(x, y)=2 x^{2}-y^{3}-2 x y$
(b) Given vector $\vec{X}=z\left(x+y^{2}\right) \vec{i}+z\left(z+x^{2}\right) \vec{j}-x^{2} y(x+y) \vec{k}$ prove that $\vec{X} . \operatorname{curl} \vec{X}=0 \quad$ (5 marks)
(c) Prove the MVT, i.e. $\int_{a}^{b} f(x) d x=(b-a) f(c)$ and find the mean value of $\int_{2}^{5} x^{2} d x, x \in[2,5]$
(5 marks)

## Best wishes, sincerely!

