KUCT
 University Examinations 2011/2012

THIRD YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRONIC \& ELECTRONIC ENGINEERING, TELECOMMUNICATION \& INFORMATION ENGINEERING AND MECHATRONIC ENGINEERING

EEE2302/ETI 2302: ANALOGUE ELECTRONICS III

AUGUST 2011

Time: 2 Hours

INSTRUCTIONS

This paper contains five questions
Answer Question ONE and any other TWO questions

QUESTION ONE [30 MARKS]

a) Briefly explain the transfer characteristics of Ideal and practical Op-Amps.
(8 marks)
b) Explain the concept of feedback and its importance in Op-Amps. (8 marks)
c) Derive the gain of a practical non inverting input Op -amp and draw its equivalent circuit showing the output as a dependent source.
(14 marks)

OUESTION TWO [20 MARKS]

a) Compute the output voltage $\mathrm{V}_{\text {out }}$ for the amplifier circuit shown in Figure below.
(12 marks)

b) Name any four fields of Op-Amp applications.
(4 marks)
c) Compute the input resistance R_{in} of the op amp circuit shown in Figure below.
(4 marks)

OUESTION THREE [20 MARKS]

a) Briefly describe a practical Op-Amp and explain any seven of its properties.
(14 marks)
b) The input voltage to the amplifier in Figure (a) is as shown in Figure (b) below. Find and sketch the output voltage for the interval $0<t<10 \mathrm{~s}$ assuming that the initial condition is zero, that is, $\mathrm{V}_{0}=0$
(6 marks)

OUESTION FOUR [20 MARKS]

a) Derive the expression for a differentiator and explain its application.
(10 marks)
b) Illustrate how an Op-Amp can be used as an impedance matching device.
(10 marks)

QUESTION FIVE [20 MARKS]

a) Explain the operation of an ideal Op -Amp rectifier.
(10 marks)
b) Describe and numerically analyze a Wien-bridge oscillator.
(10 marks)

