

KIMATHI UNIVERSITY COLLEGE OF TECHNOLOGY

UNIVERSITY EXAMINATIONS 2010/2011

THIRD YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN TELECOMMUNICATION AND INFORMATION TECHNOLOGY

EEE2306 : ELECTRICAL MACHINES II

DATE: 13TH APRIL 2011 TIME: 11.00AM – 1.00PM

INSTRUCTION

This paper contains five questions. Answer **<u>QUESTION 1(COMPULSORY)</u>** and any other two Questions

QUESTION 1

- a) Explain the principle of operation of a three phase induction motor. Giving details of how rotating magnetic field is developed in the air gap. (8 marks)
- b) With reference to the three phase induction motor define the following terms and state what causes them.
 - i) Crawling
 - ii) Cogging

- (4 marks)
- c) Describe what singlephasing is, its causes and state how a three phase induction motor can be protected against single phasing. (4 marks)
- d) A 100,000-kVA 230/115-kV Δ - Δ three-phase power transformer has a per-unit resistance of 0.02 pu and a per-unit reactance of 0.055 pu. The excitation branch elements are $R_C = 110$ pu and $X_m = 20$ pu
 - i) If this transformer supplies a load of 80 MVA at 0.85 PF lagging, draw the phasor diagram of one phase of the transformer.
 - ii) What is the voltage regulation of the transformer bank under these conditions?
 - iii) Sketch the equivalent circuit referred to the low-voltage side of one phase of this transformer.
 - iv) Calculate the entire transformer impedances referred to the low-voltage side.

(9 marks)

e) Using cross field theory, and with the help of diagrams, Explain the operation of a single phase induction machine
 (5 Marks)

QUESTION 2

a) Show that the frequency of induced emf in the rotor is given by the following expression

$$F_r = s f_s$$
 Where F_r =rotor frequency
 $s = slip$
 $f_s = synchronous frequency$ (3Marks)

- b) A 6-pole, 60Hz, Star connected, three phase induction motor has the following parameters per phase R_1 , = 0.5 Ω , R_2 = 0.25 Ω , X_1 =0.75 Ω , X_2 = 0.5 Ω , X_m =100 Ω . and R_c =500 Ω . The friction and windage losses are 150W. Determine the efficiency of the motor at its rated slip of 2.5 %. (8 marks)
- c) A 208-V, 60 Hz, six-pole Y-connected 25-hp design class B induction motor is tested in the laboratory, with the following results: No load: 208 V, 22.0 A, 1200 W, 60 Hz

	1001040.	200 V,	22.0 A,	1200 W,	00 112
	Locked rotor:	24.6 V,	64.5 A,	2200 W,	15 Hz
	DC test:	13.5 V,	64 A		
1.1	• 1 / •		1 1	1 1	, · ,·

Find the equivalent circuit of this motor, and plot its torque-speed characteristic curve.

(7 marks)

d) Differentiate between the slip ring and Squirrel cage motor (2 marks)

QUESTION 3

a) A 20-kVA 8000/480-V distribution transformer has the following resistances and reactances:

$R_p = 32 \Omega$	$R_s = 0.05 \Omega$
$X_{P} = 45 \Omega$	$X_s = 0.06 \ \Omega$
$R_c = 250 \mathrm{k}\Omega$	$X_{_M} = 30 \text{ k}\Omega$

The excitation branch impedances are given referred to the high-voltage side of the transformer.

- i) Find the equivalent circuit of this transformer referred to the high-voltage side.
- ii) Find the per-unit equivalent circuit of this transformer.
- iii) Assume that this transformer is supplying rated load at 480 V and 0.8 PF lagging. What is this transformer's input voltage? What is its voltage regulation?
- iv) What is the transformer's efficiency under the conditions of part (iii) above? (12 marks)

- b) A Delta-Delta bank consisting of three 20kVA, 2300/230V transformers supplies a load of 40kVA. If one transformer is removed, find for the resulting V-V connection
 - i) kVA load carried by each transformer
 - ii) per cent of rated load carried by each transformer
 - iii) total kVA rating of the V-V bank
 - iv) ratio of V-V bank to Delta- Delta Bank transformer rating (5 marks)
- c) List the factors that must be considered when selecting a transformer for a given load in a specific location (3 Marks)

QUESTION 4

- a) A 240-V, 50Hz, 1/3hp, 4 pole, single phase induction motor has the following circuit parameter: $R_1=2.5\Omega$, $X1 = 1.25\Omega$, $R_2 = 3.75\Omega$, $X_2 = 1.25\Omega$, and $X_m = 65\Omega$. The motor runs at speed of 1425rpm and has a core loss of 25W. The friction and windage loss is 2W. Determine the shaft torque and the efficiency of the motor. (10 marks)
- b) With special reference to the single phase induction motor, explain the following.

i).	Principle of operation of split phase motor.	(2 marks)
ii).	reversing direction of capacitor start motor	(1 mark)
iii).	Why universal motor operates better on dc than ac supply.	(2 marks)
iv).	Why we disconnect auxiliary winding in split phase motor.	(1 mark)

- c) A 115-V, 60Hz, 4pole, Single phase induction motor is rotating in the clockwise direction at a speed of 1710rpm. determine its per unit slip
 - i). in direction of rotation
 - ii). in the opposite direction
 - iii). If the rotor resistance at standstill is 12.5Ω , determine the effective rotor resistance in each direction. (4 marks)

QUESTION 5

- a) A 460-V 100-hp four-pole ∆-connected 60-Hz three-phase induction motor has a full-load slip of 5 percent, an efficiency of 92 percent, and a power factor of 0.87 lagging. At start-up, the motor develops 1.9 times the full-load torque but draws 7.5 times the rated current at the rated voltage. This motor is to be started with an autotransformer reduced voltage starter.
 - i). What should the output voltage of the starter circuit be to reduce the starting torque until it equals the rated torque of the motor?
 - ii). What will the motor starting current and the current drawn from the supply be at this voltage?

(6 marks)

- b) State the conditions that must be met before three phase transformers are connected in parallel to serve a common load. (2 marks)
- c) With a brief explanation, what type of single motor would you select to perform each of the following jobs?
 - i). Vacuum cleaner
 - ii). Refrigerator
 - iii). Air conditioner fan
 - iv). Variable-speed sewing machine
 - v). Clock

(5 marks)

- d) i) Name three ways of starting a three phase induction motor (2 mark)
 - ii) Draw the power circuit and the control circuit of a Star Delta starter and give a brief explanation (5 Marks)