

KIMATHI UNIVERSITY COLLEGE OF

TECHNOLOGY

SCHOOL OF ENGINEERING

BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONICS ENGINEERING

University Examination 2010/2011

THIRD YEAR FIRST SEMESTER

EEE 2306: ELECTRICAL MACHINES II

INSTRUCTION DATE: AUGUST 2011

This paper contains five questions. Answer **<u>QUESTION 1(COMPULSORY)</u>** and any other two Questions.

QUESTION 1

- a) With the aid of a circuit diagram and phasor, explain how a split phase single phase induction motor develops the starting torque. (4 marks).
- b) State the advantages and disadvantages of a polyphase induction motor over other type of motors that are used as drive systems. (4 marks)
- c) With the aid of a diagram explain the star / delta starting of a three phase induction motor stating its disadvantages. (6 marks)
- d) Using relevant diagrams and equations discuss the various power stages in an induction motor and give the expression for the efficiency. (8 marks)
- e) A load of 1200kVA at a power factor of 0.9397 lagging is supplied by two transformers in parallel, each of 800kVA capacity. The transformation ratio is the same at 6600/415V Delta/Star. if the equivalent impedances referred to secondary are $(0.004 + j0.02)\Omega$ and $(0.01 + j0.025)\Omega$ per phase respectively. calculate
 - i). power of each transformer,
 - ii). Power factor of each.

QUESTION 2

- a) Explain the following terms, with respect to a three phase induction motor
 - i). Plugging
 - ii). Single phasing
 - iii). cogging
 - iv). crawling

(8 marks)

(4 marks)

- b) A 50-kW, 440-V, 50-Hz, six-pole induction motor has a slip of 6 percent when operating at full-load conditions. At full-load conditions, the friction and windage losses are 300 W, and the core losses are 600W. Find the following values for full-load conditions:
 - i). The shaft speed n_m
 - ii). The output power in watts
 - iii). The load torque τ_{load} in newton-meters
 - iv). The induced torque τ_{ind} in newton-meters

(4 marks)

(6 marks)

c) A three-phase Y-connected 220-V (line-to-line) 7.5-kW 60-Hz six-pole induction motor has the following parameter values in Ω /phase referred to the stator:

$$R_1 = 0.294$$
 $R_2 = 0.144$

$$X_1 = 0.503$$
 $X_2 = 0.209$ $X_m = 13.25$

The total friction, windage, and core losses may be assumed to be constant at 403 W, independent of load. For a slip of 2 percent, compute

- i). the speed,
- ii). output torque and power,
- iii). stator current,
- iv). power factor, and
- v). Efficiency when the motor is operated at rated voltage and frequency. (6 marks)
- d) Using a 6 coil machine, explain how speed control can be obtained on a three phase induction machine (use both parallel and series connections). (6 marks)

QUESTION 3

- a) Explain how rotational torque is developed in a capacitor start motor (2 marks)
- b) Using double field revolving theory and with the help of diagrams explain the operation of Single phase induction machines
 (6 marks)
- c) For a 230V, 1-phase induction motor, the parameters of the equivalent circuit are

$$R_1 = R_2' = 8 \Omega, X_1 = X_2' = 12 \Omega$$
, and $X_m = 200 \Omega$. At a slip of 4%, calculate

- i) Input current
- ii) Input power
- iii) Developed power
- iv) Developed torque at rated voltage. The motor speed is 1728rpm. (6 marks)
- d) A resistance split phase motor rated at 0.25hp (187W), 115V, 60Hz. When the rotor is locked, a test at reduced voltage on the main and auxiliary windings yield the following results

	main	auxiliary	
	winding	winding	
applied voltage	E = 23 V	E = 23 V	
current	$I_{\rm s} = 4 {\rm A}$	$I_{\rm a} = 1.5 {\rm A}$	
active power	$P_{s} = 60 \text{ W}$	$P_{\rm a} = 30 {\rm W}$	

Calculate

i) the phase angle between I_a and I_s

ii) The locked rotor current drawn from the line at 115V.

QUESTION 4

- a) Derive the equation for starting torque in a 3 phase induction machine and the condition for the maximum torque. (4 marks)
- b) A 250W, 230V, 50Hz capacitor start motor has the following constants for the main and auxiliary windings: Main windings $Z_m = (4.5 + j3.5)ohms$ and the auxiliary $Z_a = (9.5 + j3.5)ohms$. Determine the value of starting capacitor that will place the main and auxiliary winding current in quadrature at starting. (5 marks)
- c) A three-phase, 60-Hz induction motor runs at 890 r/min at no load and at 840 r/min at full load.
 - i) How many poles does this motor have?
 - ii) What is the slip at rated load?
 - iii) What is the speed at one-quarter of the rated load?
 - iv) What is the rotor's electrical frequency at one-quarter of the rated load? (4 marks)
- d) A 15-kVA, 8000/230V distribution transformer has impedance referred to the primary of $(80 + j300)\Omega$. The components of the excitation branch referred to the primary side are given as
 - $R_C = 350k\Omega$ and $X_M = 70 k\Omega$.
 - i) If the primary voltage is 7967 V and the load impedance is $Z_L = 3.2 + j1.5 \Omega$, calculate the secondary voltage of the transformer
 - ii) Calculate the voltage regulation of the transformer in (i) above.
 - iii) If the load is disconnected and a capacitor of $-j3.5 \Omega$ is connected in its place, calculate the secondary voltage of the transformer.
 - iv) What is its voltage regulation under the conditions in (iii) above? (7 marks)

QUESTION 5

a)	Define	voltage regulation in a transformer and state how power factor affects it.	(2 marks)
D)	i)	With the aid of a diagram explain how speed reversal can be achieved in a	single phase
	1)	induction motor	(3 marks)
	ii)	Explain why a universal motor operates better on DC than on AC	(2 marks)
	iii)	Explain why auxiliary windings are disconnected upon starting.	(1 mark)
c)	A universal series motor has resistance of 30Ω and inductance of 0.5H. When connected to a		
	supply,	and loaded to take 0.8A, it runs at 2000rpm. Estimate is speed and power f	actor, when

- connected to a 250V, 50Hz ac supply and loaded to the same current. (5 marks)
- d) Discuss the different speed control methods that are used in speed control of three phase induction motors (7 marks)