

KENYATTA UNIVERSITY

UNIVERSITY EXAMINATIONS 2009/2010 INSTITUTE OF OPEN LEARNING EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

SCH 400: COMPARATIVE STUDY OF TRANSITION ELEMENTS

DATE: Friday 19th February, 2010

TIME: 11.00 a.m. - 1.00 p.m.

Instructions to candidates

Attempt All Questions

- 1. Explain the following observations
 - a) Transition elements are hard metals with high electrical and thermal conductivities, high melting points and boiling points.
 - b) Most transition metals display numerous oxidation states which vary by steps of 1.
 - c) Transition elements have an unparalled propensity for forming coordination compounds with Lewis bases.
 - d) The highest oxidation state possible for iron (Fe) is +6 as in FeO_4^{2-} . On the other hand the highest oxidation state of osmium (Os) is +8 as in OsO_4 and yet they belong in to the same group in the periodic table. (16 marks)
- 2. State and explain the general trends for each of the following properties down the groups and across the periods of the transition elements.
 - a) Density

- b) Atomic radii
- c) Electronegativity (10 marks)
- 3. Give the Oxidation State, d-orbital occupation, co-ordination number and expected magnetic moment of the central metal ion in the following complexes. Draw the expected structure.
 - a) $K_4[Fe(C_2O_4)_3]$
 - b) cis-[PtCl₂(en)₂]Cl

where $C_2O_4^{2-}$ is the oxalate ion and en = ethylenediammine (Fe = 26, Pt = 78).

(12 marks)

- 4. Briefly describe how you may obtain
 - (a) Potassium dichromate from the mineral $FeCr_2O_4$
 - (b) CrO_3 from the mineral FeCr₂O₄.
 - (c) K₂CrO₄

List any two industrial applications and one laboratory application of chromium metal or its compounds citing the chemical or physical property utilized in each case.

(16 marks)

- 5. Discuss the following
 - (a) The contribution of covalency to bonding and stabilization of high oxidation states of transition elements
 (6 marks)
 - (b) The stability of group oxidation state of the metals across the first transition series of the periodic table. (6 marks)
 - (c) Formation of metal-metal bonds in transition metal compounds (4 marks)