

KENYATTA UNIVERSITY UNIVERSITY EXAMINATIONS 2007/2008 INSTITUTE OF OPEN LEARNING SPECIAL EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

SCH 401: ELECTROCHEMISTRY

DATE: Thursday 7th October 2008 _____ TIME: 10.00am – 12.00pm

INSTRUCTIONS: Answer ALL questions.

F = 96500 C, Atomic mass Cu = 64, Ag = 107, N = 14, O=16 Cu⁺² /Cu' E^0 = +0.337V, Ag E^0 = +0.7991V

- Q1. (a) Define the following electrochemical terms and show how they are related to each other.
 - (i) Conductance
 - (ii) Conductivity
 - (iii) Molar conductivity [6 marks]
 - (b) (i) Discuss quantitatively the way in which conductivity and molar conductivity changes with increase in dilution for strong intermediate and weak electrolyte. [6 marks]
 - (ii) Account for asymmetric and electrophonetic effects in the same.

[6 marks]

(c) The variation of molar conductivities with concentration of an aqueous solution of a given salt is as shown in table 1 below

Concentration/mol dm ⁻³	0.0005	0.001	0.005	0.01	0.02	0.05	0.1
Molar conductivity/	131.4	130.5	127.2	124.8	121.4	115.2	109.1
$\Omega^{-1} \operatorname{cm}^2 \operatorname{mol}^{-1}$							

- By plotting a graph, determine the molar conductance at infinite dilution of the solution [8 marks]
- (ii) Calculate the apparent degree of dissociation for the solution at a concentration of 0.015 mol dm⁻³
 [2 marks]
- (iii) Based on information from above (Q1c part ii), classify the above solution. [1 mark]
- Q2. (a) In a moving boundary experiment a current of 1.6 mA was applied to a 0.02 M NaCl solution at 25°C using CdCl₂ as the following solution. It was found out that the boundary had moved 10 cm in 3453 seconds in a tube of cross sectional area 0.1115 cm². The conductivity of this solution chloride solution at 25°C is $2.313 \times 10^{-3} \Omega^{-1}$ cm² mol⁻¹. Calculate (i) The mobility of Na⁺ [3 marks]
 - (ii) The transport number of Na^+ [3 marks]
 - (b) In a Hittorf cell experiment, a solution of silver nitrate was electrolysed between silver electrodes. The amount of silver nitrate in the anode compartment was 0.227 g before electrolysis and 0.2819 g after electrolysis. During electrolysis, 0.0194 g of copper were deposited on the cathode of copper coulometer in series with the Hittorf cell.
 - (i) Calculate the transport number of Ag^+ and NO_3^- ions. [4 marks]
 - (ii) Which of the ions (between Ag⁺ and NO₃⁻) carry majority of the current. [1 mark]
- Q3. (a) Given the metals silver and copper and solutions of silver nitrate and copper nitrate at 25°C.
 - (i) Construct a cell which will operate spontaneously [1 mark]
 - (ii) Write the equation for the reaction [2 marks]
 - (iii) Calculate the equilibrium constant for the reaction [2 marks]
 - (b) The emf of the cell with transport viz
 Pt/H₂ (1 atm)/HCl (a±0.009048)/HCl (a±0.01751)/H₂ (1 atm)/Pt is
 0.02802 V at 25°C. The emf of the corresponding cell without transport is
 0.01969 V

(I)	Write	Write the overall cell reaction for the cell						
	(i)	Without transport	[2 marks]					
	(ii)	With transport	[2 marks]					
(II)	Calc	Calculate						
	(i)	The liquid junction potential	[2 marks]					
	(ii)	The transport numbers of the H^+ ions	[2 marks]					

- Q4. Give the electrochemistry principles of nickel cadmium battery, showing the reactions at the cathode, anode and overall reaction, the electrolyte used and current collector and give two applications. [8 marks]
- Q5. Give two advantages and two disadvantages of using the following techniques in corrosion monitoring
 - (a) Linear polarization resistance technique
 - (b) Corrosion potential measurement technique [8 marks]
