

KENYATTA UNIVERSITY

UNIVERSITY EXAMINATIONS 2009/2010

INSTITUTIONAL BASED EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE EDUCATION

SCH 401: ELECTROCHEMISTRY

DATE: Wednesday 28th April, 2010 **TIME**: 8.00 a.m. – 10.00 a.m.

INSTRUCTIONS

Attempt ALL questions.

- With detailed diagram, explain the products obtained during electrolysis of 0.2 M CuSO₄ solution using
 - a. Copper Electrodes
 - b. Graphite Electrodes

[10 marks]

2. Study the cell below and answer questions (a) to (e)

Ag/Ag⁺_(aq)//Cl⁻/AgCl, Ag

a. Write the half reactions of the cell

[4 marks]

b. Write the full reaction of the cell

[1 mark]

- c. Write the Nernst equation for the electrochemical reaction above in terms of the activities of the species involved. [2 marks]
- d. Derive the relationship between the concentration of the species present (in molalities) and the cell emf. [8 marks]
- e. Sketch a suitable curve for the relationship in equations above (d) and indicate the important information from the y-intercept. [6 marks]
- 3. Explain how a fourth year chemistry student would be able to determine the transference number of H⁺ in aqueous solution of HCl using boundary method. Include diagrams and equations where necessary.

[8 marks]

4. A sample with water having specific conductance of 1.12 x 10⁻⁶ ohm⁻¹ cm⁻¹ was saturated with silver chloride, where upon the specific conductance rose to 2.85 x 10⁻⁶ ohm⁻¹ cm⁻¹. Find the solubility of silver chloride, a strong electrolyte.

[6 marks]

5. Formulate the galvanic cell corresponding to the following reactions

a.
$$Ag_{(s)} + H_{(aq)}^+ \rightarrow Ag_{(aq)}^+ + \frac{1}{2}H_{2(g)}$$

b.
$$Br_{2(l)} + 2Ce_{(aq)}^{+3} \rightarrow 2Br_{(aq)}^{-} + 2Ce_{(aq)}^{+4}$$
 [6 marks]

6. Given the following cells

Pt,
$$H_2/HCl(a_1)//HCl(a_2)/H_2$$
, Pt

- a. Draw a sketch for a similar cell without transference. [3 marks]
- b. For each of the cells above, write the overall cell equations.

[6 marks]

c. Write down the Nernst equations for the emf's of each cell.

[4 marks]

d. Write down the expression for the liquid junction in terms of the mean activities of the HCl and the transference numbers of the chloride and hydrogen ions.
[6 marks]