

KENYATTA UNIVERSITY

UNIVERSITY EXAMINATIONS 2009/2010 INSTITUTIONAL BASED PROGRAMME EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE SMA 305: COMPLEX ANALYSIS I

DATE: THURSDAY, 2ND SEPTEMBER 2010 TIME: 2.00 P.M. - 4.00 P.M.

<u>INSTRUCTIONS</u>: Answer question ONE and any other TWO questions.

QUESTION ONE - Compulsory (30 marks)

(a) If
$$z = 1 + \sqrt{3i}$$
, find z^5 . (3 marks)

(b) Determine whether or not the function
$$f(z) = \begin{cases} \frac{z^2 + 9}{z - 3i} & \text{if } z \neq 3i \\ 2 + 3i & \text{if } z = 3i \end{cases}$$

is continuous at $z = 3i$ (3 marks)

- (c) Differentiate $f(z) = 2z^3 + z$ using first principles. (4 marks)
- (d) Show that $f(z) = e^{-y}e^{ix}$ is analytic. (3 marks)
- (e) Find the linear transformation that maps $z_1 = 1$, $z_2 = 0$, $z_3 = -1$ onto $w_1 = i$, $w_2 = \infty$, $w_3 = 1$ respectively. (3 marks)
- (f) Evaluate $\int_{c} \overline{z} dz$ from z = 0 to z = 4 + 2iand then from z = 2i to z = 4 + 2i (4 marks)

(g) Find the residues of
$$f(z) = \frac{z}{(z-2)}(z+2)^2$$

at all its poles. (3 marks)

(h) Expand
$$f(z) = (z-3)\sin\frac{1}{z+5}$$
 into a Laurent Series at $z = -5$. (3 marks)

(i) Evaluate
$$\oint_{c} \frac{dz}{z^2} - iz + 6$$
 around the circle $c : |z - 2i| = 1$ (4 marks)

QUESTION TWO (20 marks)

(a) Prove that
$$\cos 4\theta = 8\sin^4 \theta - 8\sin^2 \theta + 1$$
 (5 marks)

(b) Find the third roots of
$$z = -1 + i$$
 (5 marks)

- (c) Express $\sin^5 \theta$ in multiple angles. (5 marks)
- (d) Show that the function

$$f(z) = \begin{cases} \frac{z^2 + 2iz}{z^2 - iz + 6}, & \text{if } z \neq -2i \\ 4i, & z = -2i \end{cases}$$

is not continous at $z = -2i$ (5 marks)

QUESTION THREE (20 marks)

(a)	Prove that $f(z) = z^3 - 2z$ is harmonic.	(5 marks)
(b)	Given that the function $u(x, y) = y^3 - 3x^2y$ is harmonic, find v(x,y)	
	such that $f(z) = u + iv$ is analytic.	(5 marks)
(c)	Show that $\sin z = \sin x \cosh y + i \cos x \sinh y$.	(6 marks)
(d)	Find the principle value of $(-1)^{i}$	(3 marks)

QUESTION FOUR (20 marks)

(a) Find the image of the unit square in the *z* plane given by a transformation f(z) = Bz + c where B = 3 + 4ic = 2 + 3i

(5 marks)

(b) Find the fixed points of
$$f(z) = \frac{3z - 10}{z + 1}$$
 (5 marks)

(c) Prove that
$$f(z) = \frac{1}{z}$$
 maps the line $X = K$ onto a circle. (5 marks)

(d) Evaluate the Integral
$$\int_{(0,3)}^{(2,4)} (2y + x^2)(3x - y)dy$$
 along the parabola

$$X = 2t, y = t^2 + 3.$$

QUESTION FIVE (20 marks)

- (i) Cauchy's Integral Theorem (2 marks)
- (ii) Cauchy's Residue Theorem (3 marks)

(b) Expand
$$f(z) = \frac{1}{(z+1)} (z+3)$$
 in a Laurent Series valid for
 $0 < |z+1| < 2$ (5 marks)

(c) Evaluate
$$\oint_{c} \frac{e^{z}}{(z-2)(z-4)} dz$$
 when
(i) $|z| = 5$ (6 marks)
(ii) $|z| = 3$ (4 marks)
