

KENYATTA UNIVERSITY
 UNIVERSITY EXAMINATIONS 2007/2008
 INSTITUTE OF OPEN LEARNING

EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE
SCH 403: PHASE EQUILIBRIA
DATE: MONDAY, $7^{\text {TH }}$ JULY 2008 TIME: 10.30 A.M. - 12.30 P.M.

INSTRUCTIONS: ANSWER ALL QUESTIONS.

1. (a) Distinguish between
(i) Osmosis and Osmotic pressure
(ii) Triple point and Eutectic point
(iii) Congruent melting and incongruent melting point.
(iv) Boiling point elevation and freezing point depression of a solution.
(b) Show that the triple point of water is invariant.
(c) (i) Give both phase rule and condensed phase rule.
(ii) Define the terms employed in phase rule.
2. (a) Draw a well-labeled phase diagram of a water system. (10 marks)
(b) The vapour pressure of pure ccl_{4} and sncl_{4} at $20^{\circ} \mathrm{C}$ are
114.9 mmHg and 238.9 mmHg respectively.

Assuming ideal behavour, determine the total vapour pressure
of a mixture of 8 gms of ccl_{4} and 12 gm of sncl_{4} liquids respectively.
3. (a) Explain how you would determine the molecular weight of a substance in solution form its osmotic pressure.
(b) Using clapeyron equation, show that clausius clapeyron equation is

$$
\log \frac{P_{2}}{P_{1}}=\frac{\Delta H v}{2.303 R}\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right)
$$

(c) Calculate the heat of vapourisation of acetone if the vapour pressure of acetone at $0^{\circ} \mathrm{C}$ is 53.46 mmHg and at $30^{\circ} \mathrm{C}$ it is 237 mmHg .

$$
(\mathrm{R}=1.987 \mathrm{cal})
$$

4. (a) Use the following data to draw a phase diagram for substance A and B system.
(i) Melting point of B is $655^{\circ} \mathrm{C}$
(ii) Melting point of A is $500^{\circ} \mathrm{C}$
(iii) One eutectic point at $180^{\circ} \mathrm{C}$ with $25 \% \mathrm{~A}$ and another at $350^{\circ} \mathrm{C}$ with 85% of A .
(iv) $\quad \mathrm{A}$ solid compound BA_{2} is formed which melts at $580^{\circ} \mathrm{C}$.
(15 marks)
(b) Draw and label a sulphur system phase diagram.

State the number of triple points in this phase diagram.
(10 marks)

