KENYATTA UNIVERSITY

UNIVERSITY EXAMINATIONS 2009/2010

INSTITUTE OF OPEN LEARNING EXAMINATION FOR THE DEGREE OF
BACHELOR OF SCIENCE

SCH 403: PHASE EQUILIBRIA

DATE: Saturday $20^{\text {th }}$ February, 2010
TIME: 8.00 a.m. - 10.00 a.m.

INSTRUCTIONS

ANSWER ALL QUESTIONS
Q1. (a) Distinguish between
(i) Osmosis and Osmotic Pressure.
(ii) Triple point and Eutectic point.
(iii) Congruent melting and incongruent melting point.
(iv) Boiling point elevation and freezing point depression of a solution (8 marks)
(b) Show that the triple point of water is invariant.
(c) (i) Give both phase rule and condensed phase rule
(ii) Define phase employed in phase rule

Q2. (a) Draw a well-labeled phase diagram of a water system. (10 marks)
(b) The vapour pressure of pure Ccl_{4} and Sncl_{4} at $20^{\circ} \mathrm{C}$ are 114.9 mmHg and 238.9 mmHg respectively. Assuming ideal behaviour, determine the total vapour pressure of a mixture of 8 gms of ccl 4 and 12 gm of sncl4 liquids respectively
Q. 3 (a) Use the following data to draw a phase diagram for substance A and B system.
(i) Melting point of B is $655^{\circ} \mathrm{C}$
(ii) Melting point A is $500^{\circ} \mathrm{C}$
(iii) One eutectic point at 1800 C with $25 \% \mathrm{~A}$ and another at $350^{\circ} \mathrm{C}$ with 85% of A
(iv) A solid compound BA2 is formed which melts at $580^{\circ} \mathrm{C}$
(15 marks)
(b) Draw and label a sulphur system phase diagram. State the number of triple points in this phase diagram.
Q. 4 (a) Explain how you would determine the molecular weight of a substance in solution from its osmotic pressure (5 marks)
(b) Using clapeyron equation, show that clausius clapeyron equation is

$$
\begin{equation*}
\log \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{\Delta \mathrm{H}_{v}}{2.303 R}\left(\frac{\mathrm{~T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{1}-\mathrm{T}_{2}}\right) \tag{5marks}
\end{equation*}
$$

(c) Calculate the heat of vapourisation of acetone if the vapour pressure of acetone at $0^{\circ} \mathrm{C}$ is 53.46 mmHg and at $30^{\circ} \mathrm{C}$ it is 237 mmHg

$$
\begin{equation*}
(\mathrm{R}=1.987 \mathrm{cal}) \tag{5marks}
\end{equation*}
$$

