K UNIVERSITY

UNIVERSITY EXAMINATIONS: 2013/2014 EXAMINATION FOR THE MASTERS OF SCIENCE (MSC) IN COMMERCE MFI 604 ECONOMETRICS II (WEEKEND)

DATE: APRIL, 2014

TIME: 3 HOURS

INSTRUCTIONS: Answer Question One and Any Other Three Questions

QUESTION ONE

- (a) Explain briefly the following terms:
 - (i) Heteroscedasticiy
 - (ii) Autocorrelation
 - (iii) Multicollinearity
 - (iv) Weak stationarity
 - (v) Simultaneous equation bias [10 Marks]

(b) Outline the consequences of heteroscedasticity. [4 Marks]

- (c) Explain the consequences of error terms being autocorrelated in a regression model.[4 marks]
- (d) Describe briefly the consequences of multicollinearity [5 Marks]
- (e) Explain why is it in general important to test for non-stationarity in time series data before attempting to build an empirical model. [6 Marks]

QUESTION TWO

(a) A model was estimated for house prices as a function of the characteristics of the house (hedonic model)

 $Price = \beta_0 + \beta_1 lotsize + \beta_2 sqrft + \beta_3 bdrms + u$

Where lotsize - size of land, sqrft - size of house, and bdrms - number of bedrooms.

The regression (auxiliary) for White test was done and the following results were obtained.

* do auxiliary regression for version 1 of White test . regress uhatsq lotsize sqrft bdrms lotsizesq sqrftsq bdrmssq lotsqrf lotbdrms s								
-	SS				Number of obs			
+-					F(9, 78)			
Model	1.6784e+09	9 186	492384		Prob > F	= 0.0000		
Residual	2.7003e+09	78 3461	9264.4		R-squared	= 0.3833		
+-					Adj R-squared	= 0.3122		
Total	4.3787e+09	87 5033	0276.7		Root MSE	= 5883.8		
- ·					[95% Conf.	-		
-					-3.127869			
sqrft	-2.673917	8.662183	-0.31	0.758	-19.919	14.57116		
bdrms	-1982.841	5438.482	-0.36	0.716	-12810.03	8844.345		
lotsizesq	-4.98e-07	4.63e-06	-0.11	0.915	-9.72e-06	8.72e-06		
sqrftsq	.0003523	.0018396	0.19	0.849	0033101	.0040146		
bdrmssq	289.7541	758.8302	0.38	0.704	-1220.961	1800.469		
lotsqrf	.0004568	.0002769	1.65	0.103	0000945	.001008		
lotbdrms	.3146468	.2520936	1.25	0.216	187233	.8165266		
sqrfbdrms	-1.02086	1.667154	-0.61	0.542	-4.339909	2.298189		
_cons	15626.24	11369.41	1.37	0.173	-7008.516	38261		

Conduct the White test clearly specifying the null and the alternative hypotheses. [7 Marks]

(b)	Testing for non-normality was carried out using Jarque- Bera test and the test statis	stic was 1004
	and observation were 252. Carry the at 5% level.	[7 Marks]

- (c) Explain the consequences of non-normality in a small sample. [3 Marks]
- (d) Given the following test for linear restriction at 5% level. [6 Marks]

Unconstrained regression with SSR = 3844, and restricted regression with 3959. The explanatory variables in unconstrained regression were three. The sample size was 400 and the explanatory variables were three.

QUESTION THREE

- (a) Distinguish between order condition and rank condition for identification of system of simultaneous equation. [4 Marks]
- (b) A researcher estimates the following model for stock market returns, but thinks that there may be a problem with it. By calculating the t-ratios, and considering their significance and by examining the value of R^2 or otherwise, suggest what the problem might be.

 $Y_t = 0.638 + 0.402 X_{1t} - 0.891 X_{2t} \quad \text{with } R^2 = 0.96 \text{, adj } R^2 = 0.89$

(0.436) (0.291) (0.763)

How might you go about solving the perceived problem? [10 Marks]

(c) Consider a multiple regression with two explanatory variables and a sample size of 20. The results gave a Durbin-Watson statistic = 0.2109. Conduct test for autocorrelation at 5% level.

[9 Marks]

QUESTION FOUR

- (a) An econometrician suspects that the residuals of his model might be autocorrelated. Explain the steps involved in testing this theory using the Breush-Godfrey test. [8 Marks]
- (b) The econometrician follows your guidance in part (b) and obtains the following results: n*R-squared = 15.15657 with a sample size of 40 observations. Perform the test at 5 per cent level.

[7 Marks]

(c) Suppose you have the following:

$$Y_t = \beta_0 + \beta_1 X_t + u_t \text{ where } u_t = \rho u_{t-1} + v_t$$

Explain how you correct for autocorrelation using Cochrane-Orcutt method. [8 Marks]

QUESTION FIVE

- (a) Explain steps involved in the Ramsey's RESET test for misspecification. [6 Marks]
- (b) Discuss how a researcher might test for cointegration between variables using the Johansen approach.
 [8 Marks]
- (c) Explain the steps involved in the formulation of an error correction model, specifying the model and how the parameters are interpreted. [9 Marks]

QUESTION SIX

(a) What stylised features of financial data cannot be explained using linear time series models?

[6 Marks]

- (b) Which of these features could be modelled using a GARCH(1,1) process? [3 Marks]
- (c) Why, in recent empirical research, have researchers preferred GARCH(1,1) models to pure ARCH(p)? [4 Marks]
- (d) Describe two extensions to the original GARCH model. What additional characteristics of financial data might they be able to capture? [10 Marks]