UNIVERSITY EXAMINATIONS: 2013/2014
EXAMINATION FOR THE MASTERS OF SCIENCE (MSC) IN COMMERCE MSF 502 ECONOMETRICS I

DATE: APRIL, 2014
TIME: 3 HOURS

INSTRUCTIONS: Answer Question One and Any Other Three Questions

QUESTION ONE

a) Briefly differentiate the following estimation methods as used in econometrics: OLS, MLE and GMM
[6 Marks]
b) Irene, an MSC student from KCA University, is writing her MSC thesis titled: "Impact of job satisfaction on employee retention at KCA University." She has the following three objectives for her thesis:
(i) To determine the impact of reward systems on employee retention
(ii) To assess the impact of capacity building on employee retention
(iii) To examine the impact of working environment on employee retention

She collected quantitative data from the target population to fit the following population
regression equation: $y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\varepsilon$
Where:
$\mathrm{y}=$ Employee retention
$X_{1}=$ Benefits (reward system)
$\mathrm{X}_{2}=$ Training (Capacity building)
$X_{3}=$ Type of office(Working environment) and;
$\varepsilon=$ Error term

Use the information provided to answer the following questions:

1) Using relevant equations, differentiate between a population regression equation and an estimated regression equation
2) Diagrammatically show the relationship between the variables mentioned in the title and the objectives of study by showing clearly the outcome and the explanatory variables
[4 Marks]
3) From the data collected, from 20 respondents, the exploratory output below was derived. Interpret the output.

4) The MSC student fitted the multiple regression, and the output is given as:

Source	SS	$d f$	MS
Model Residual	61.4618138 68.7381862	3 16	20.4872713
Total	130.2	19	6.85263158

| Number of obs | $=20$ |
| :--- | ---: | ---: |
| F (3, 16) | $=4.77$ |
| Prob $>$ F | $=0.0147$ |
| R-squared | $=0.4721$ |
| Adj R-squared | $=0.3731$ |
| Root MSE | $=2.0727$ |

| retention | Coef. | Std. Err. | t | $P>\|t\|$ | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| benefits | .019274 | .0125077 | 1.54 | 0.143 | -.0072411 | .045789 |
| training | .7903634 | .2304289 | 3.43 | 0.003 | .301876 | 1.278851 |
| office | .0191658 | .419212 | 0.05 | 0.964 | -.869524 | .9078555 |
| _cons | 1.308159 | 1.668116 | 0.78 | 0.444 | -2.228089 | 4.844406 |

Required:

Use the above output to answer the following questions:
(i) Write the STATA command used to give the regression output shown above. [1 Mark]
(ii) How well does the model fit the data?
(iii) Discuss the significance of the explanatory variables in the regression equation
(iv) Write the fitted regression from the output given
c) Suppose we have a multivariate model:
$y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{1} x_{i 2}+\beta_{3} x_{i 3}+\beta_{4} x_{i 4}+\beta_{5} x_{i 5}+u_{i}$
and we want to test whether independent variables x_{3}, x_{4}, and x_{5} jointly have effect on y.
(i) Write the null hypothesis
(ii) Write the restricted model.
(iii) How many restrictions are there in this test?
(iv) Now consider an estimated regression model given as:

$$
\hat{Y}=3500-0.148 X_{1 t}-11.13 X_{2 t}+2.2 X_{3 t}, R^{2}=0.123, n=700
$$

When the model was estimated without the second and third explanatory variables the following was obtained:
$\hat{Y}=3495-0.151 X_{1 t}, R^{2}=0.113, n=700$
Are the second and third explanatory variables jointly significant in the original function at 5\% level of significance?

QUESTION TWO

Given the following over 21 observations

$$
\left(X^{\prime} X\right)^{-1}=\left[\begin{array}{crr}
2 & 3 & -1 \\
3 & 1 & 6 \\
-1 & 6 & 4
\end{array}\right], \quad X^{*} Y=\left[\begin{array}{r}
-3 \\
2 \\
1
\end{array}\right] \quad \text { and } \quad \sum e_{i}^{2}=10
$$

a) Obtain the OLS estimates and specify the estimated function
b) Determine the standard errors of the coefficient estimates
c) Test the significance of the independent variables in the estimated function at 5% level of significance

QUESTION THREE

Billy, a General Manager at Mumias Sugar Company, estimated a multiplicative demand function of the form: $Q_{d}=a P^{a_{p}} I^{a_{1}} P_{0}^{a_{0}}$ using a cross-section data collected in the company sales on 30th June, 2013. The estimation results are as follows:

	Constant	Price (P)	Income (I)	Price of Other Good (PO)
Estimated coefficient	0.022	-0.223	1.354	0.133
Standard Error	0.012	0.056	0.502	0.814
t-statistic	(1.19)	(-3.98)	-2.69	-0.13

Number of Observations, $n=224 ; R$-squared $=0.8515$
Critical Students' $\mathrm{t}=1.96$ at 5% Level of Significance
a) How would the coefficients and R^{2} value be interpreted?
[5 Marks]
b) What will the quantity demanded be if the values of the independent variables are: Price $=10$; Income per capita $=$ Ksh 9,000 ; and the Price of the Other Good $=$ Ksh 15 ?
[5 Marks]
c) How much would quantity demanded change if the price were decreased to Ksh 8 and values of other variables held constant?
[5 Marks]
d) What effect would a price increase have on total revenue? Are the two goods substitutes or complements? Explain
[8 Marks]

QUESTION FOUR

Consider a zoo that has only chimps and elephants where poop_{j} is the weight (in pounds) of poop
animal j produces on a given day, $S_{j}=1$ if the animal is a elephant, and zero otherwise. The amount of poop animal j produces on a given day is a draw from a Poisson distribution (some animals on some days are constipated) with parameter λ_{j} where $\lambda_{j}=\alpha+\beta S_{j}$. The director of the zoo likes only chimps, but knows that chimps like to ride on the backs of elephants, so has 90 chimps and 10 elephants (lots of chimps can ride one elephant).

Required:

(i) Write down the density function for poop for this population.
(ii) Explain why this is the density function.
(iii) Derive the expected amount of poop produced per day.
(iv) Comment briefly on the likelihood of the poop being Poisson distributed rather than Normally distributed.

QUESTION FIVE

a) State in algebraic notation and explain the assumption about the CLRMs disturbances, referred to by the term "homoskedasticity".
[5 Marks]
b) What would the consequence be for a simple linear regression model if the errors were not homoskedastic? Explain
c) Briefly explain the meaning of the term heteroskedasticity as used in econometrics [2 Marks]
d) Explain the procedures that are used to test for "heteroskedasticity" [10 Marks]

QUESTION SIX

Consider a STATA dataset with the following variables:

age	age in years
educ	highest grade completed
black	1 if race is black, 0 otherwise
other	1 if race is neither black nor white, 0 otherwise
married	1 if married, 0 otherwise
hwk	average hours worked per week
female	1 if female, 0 otherwise
drmo	

We are interested in estimating the effect of work hours on alcohol consumption. The theoretical effect is ambiguous: on one hand, working more leaves less time for leisure activities, so drinking may drop, but on the other hand, working more may increase stress levels, so drinking may rise. To answer this, through research, we fit a simple linear regression of the form:
drmo $=\beta_{0}+\beta_{1} h w k+u \quad ; \quad$ and \quad a multiple linear regression of the form: drmo $=\beta_{0}+\beta_{1} h w k+\beta_{2}$ age $+\beta_{3}$ educ $+\beta_{4}$ black $+\beta_{5}$ other $+\beta_{6}$ married + β_{7} female $+u$
to the dataset.

Suppose that if we estimate the simple linear regression we obtain the following STATA output:

Also that if we estimate the multiple linear regression model, we obtain the following STATA output:

Source \|	SS	df MS			Number of obs $=7488$	
					F (7, 7480)	$=52.17$
Model \|	266836.037	7381	9.4338		Prob $>$ F	$=0.0000$
Residual	5465529.92	7480730	. 685819		R-squared	$=0.0465$
					Adj R-squared	$=0.0457$
Total \|	5732365.96	7487765	642575		Root MSE	$=27.031$
drmo	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
hwk	. 0302414	. 0161589	1.87	0.061	-. 0014345	. 0619174
age	-. 3381229	. 1397713	-2.42	0.016	-. 612114	-. 0641318
educ	-. 2849688	. 1265659	-2.25	0.024	-. 5330735	-. 0368641
black	-3.643506	. 7159052	-5.09	0.000	-5.046882	-2.240131
other	-3.100133	1.358236	-2.28	0.022	-5.762659	-. 4376079
married	-3.096517	. 6613095	-4.68	0.000	-4.392869	-1.800164
female	-10.73453	. 6449336	-16.64	0.000	-11.99878	-9.470277
_cons \|	38.07319	6.498279	5.86	0.000	25.33474	50.81164

Required:

Use the STATA outputs to answer the following questions:
(i) In the simple linear regression is $h w k$ statistically significant at 5% level? What about in the multiple regression? (Explain your answer)
(ii) Explain, in words, exactly what the coefficient estimate for $h w k$ in the multiple regression is telling us. How would you interpret female in the multiple regression?
(iii) Does it appear that our estimator for the effect of work hours on drinking is biased if we do not include any control variables? (Explain your answer)
[4 marks]
(iv) Using an F-test, which is a better model in estimating the effect of work hours on alcohol consumption? (show all your working)

