

KIMATHI UNIVERSITY COLLEGE OF TECHNOLOGY

University Examination 2011/2012

FOURTH YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN ACTUARIAL SCIENCE

SMA 2436: STOCHASTIC PROCESSES

DATE: 17TH AUGUST 2011

TIME: 8.30AM – 10.30AM

[6 marks]

Instruction: Answer Question ONE and any other TWO

QUESTION ONE (30 MARKS)

- a). Briefly discuss the following terms as used in stochastic processes.
 - i. Markovian process
 - ii. Random experiment
 - iii. Homogeneous Poisson process
- b). Consider the "Memoryless property", suppose that X has an exponential distribution, such that, P(X > s + t | X > t) = P(X > s) for all $s, t \ge 0$. Prove this. [5 marks]

c). Find the probability generating function of a Geometric distribution, hence find;

i.	Mean	[4 marks]
ii.	Variance.	[5 marks]

d). Suppose that a Markov Chain $\{X_t, t \ge 0\}$ whose state space is the set $\{0,1,2\}$, has the one-step transition probability matrix P given by,

$$P = \begin{bmatrix} 13/36 & 11/54 & 47/108 \\ 4/9 & 4/27 & 11/27 \\ 5/12 & 2/9 & 13/36 \end{bmatrix}$$

- i. Is the matrix P stochastic? If 'yes' why? [1 mark]
- ii. Find $P(X_3 = 1, X_1 = 2, X_0 = 1)$ if $P(X_0 = i) = 1/3$. [4 marks]

e).	Discuss the conce	pt of Geometric	Brownian proces	s and counting process	3. [3 marks]
		1	1	01	L J

f). What do you understand by the term '*Branching processes*? [2 marks]

QUESTION TWO (20 MARKS)

- a). Explain the term Non-homogeneous Poisson process? [5 marks]
- b). Suppose that the failures of a certain machine occur according to a Poisson process with rate $\lambda = 2$ per week and that exactly two failures occurred in the interval [0,1]. Let $t_0 (> 3)$ be an arbitrary value of t. What is the probability that, at time t_0 (at least) two weeks have elapsed since;
 - i). The last failure occurred? [2 marks]
 - ii). The penultimate failure occurred?
 - iii). What is the probability that there will be no failures during the two days beginning with to if exactly one failure occurred (in all) over the last two weeks?

[3 marks]

[2 marks]

- c). A particle move one step to the right with probability p and one step to the left with probability 1-p in one unit time with absorbing barriers at 0 and at n. If the particle is at state r, then by using a transition probability matrix, represent this simple random walk model that will describe the position of a particle after n steps. [4 marks]
- d). In a departmental store one cashier is there to serve the customers. And the customers pick up their needs by themselves. The arrival rate is 9 customers for every 5 minutes and the cashier can serve 10 customers in 5 minutes. Assuming Poisson arrival rate and exponential distribution for service rate, find:

i.	Average number of customers in the system.	[1 mark]
ii.	Average number of customers in the queue or average queue length.	[1 mark]
iii.	Average time a customer spends in the system.	[1 mark]

iv. Average time a customer waits before being served. [1 mark]

QUESTION THREE (20 MARKS)

- a). Distinguish between 'Stationary' and 'Independent' increments as used in stochastic processes; [4 marks]
- b). The arrivals and services follow a Poisson process. Customers arrive at a rate of 8 per hour and the service rate is 10 per hour.
 - i. What is the average number of customers waiting for service? [5 marks]
 ii. What is the average time for a customer to be in the system? [2.5 marks]
 iii. What is the average time a customer must wait in the queue? [2.5 marks]
- c). We define the stochastic process $\{X(t), t \ge 0\}$ by; $X(t)=B(t)| \{B(t) \ge 0\}$ for $t \ge 0$, where $\{B(t), t \ge 0\}$ is a standard Brownian motion.

Find E(X) hence verify if the stochastic process $\{X(t), t \ge 0\}$ is Gaussian. [6 marks]

QUESTION FOUR (20 MARKS)

- a). State the elements of the queuing system.
- b). Suppose that a Markov Chain $\{X_t, t \ge 0\}$ whose state space is the set $\{1,2,3\}$, has the onestep transition probability matrix P given by,

	65/180	55/270	235/540
P =	8/18	8/54	22/54
	10/24	4/18	26/72

Suppose that the initial distribution is given by $\alpha_i = P(X_0 = i) = \{1/2, 1/3, 1/6\}$. Find;

i. $P(X_2 = 2)$ [2 marks] $P(X_0 = 1, X_2 = 3)$ [3 marks] ii. $P(X_1 = 2, X_2 = 3, X_3 = 1 | X_0 = 1)$ iii. [5 marks] $P(X_{12} = 1 \mid X_5 = 3, X_{10} = 1)$ [2 marks] iv. [5 marks] $P(X_3 = 3, X_5 = 1 | X_0 = 1)$ v.

QUESTION FIVE (20 MARKS)

- a). State the Birth and Death Process.
- b). Let $Z = \{1, 2, 3, 4, 5\}$ be the state space of a Markov chain with a transition matrix;

	0.2	0	0.5	0.3	0
	0.1	0	0.9	0	0
P =	0	1	0	0	0
	0.4	0.1	0.2	0	0.3
	0	0	0	0	1

Represent the above matrix on a transition graph.

- c). Suppose that X_1, X_2 and X_3 are independent random variables, all of which have Exp (λ) distribution. Calculate the $P[X_1 < (X_2 + X_3)/2]$. [8 marks]
- d). Define a martingale.

[4 marks]

[3 marks]

[3 marks]