

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya. Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411 Fax: 064-30321 Website: www.must.ac.ke Email: info@must.ac.ke

University Examinations 2013/2014

SECOND YEAR, SECOND SEMESTER EXAMINATIONS FOR DEGREE BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY

ICS 2205: DIGITAL LOGICS

DATE: APRIL 2014

TIME: 2 HOURS

INSTRUCTIONS: Answer question one and any other two questions.

QUESTION ONE - (30 MARKS)

(a) Convert the following decimal numbers to binary and then to hexadecimal.

	(i)	$(141)_{10}$	(31	Marks)
	(ii)	$(243)_{10}$	(31	Marks)
(b)	Design	a 3-input NAND gate and prepare its truth table.	(31	Marks)
(c)	What i	s a flip flop?	(11	Marks)
(d)	Prove t	hat $A + B(A + B) = A + B$	(31	Marks)
(e)	Design	logic circuit for the logic expression.		
	Y = A	$\overline{B} + \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}$	(31	Marks)
(f)	Conver	rt the Boolean expression to a standard sum of product (Sop) form.		
	(i)	$\bar{A} + AB + AB\bar{C}$	(31	Marks)
	(ii)	$AB + A\overline{C} + BC$	(31	Marks)
(g)	Add th	e hexadecimal numbers		
	(i)	OB + 12F	(21	Marks)
	(ii)	31C + 10D	(31	Marks)

QUESTION TWO - (20 MARKS)

(a) Find two's compliment	
(i) $(1001001)_2$	(2 Marks)
(ii) (1110010) ₂	(2 Marks)
(b) Convert the octal numbers to decimal	
(i) (547) ₈	(2 Marks)
(ii) (375) ₈	(2 Marks)
(c) Prepare a truth table of the logic expression	
$Y = \overline{A + B} + C$	(3 Marks)
(d) Simplify the logic expression using Boolean Algebra	
(i) $(\bar{A} + B)(A + B)$	(3 Marks)
(ii) $A + \overline{A}B + A\overline{B}$	(4 Marks)
(e) What are logic gates?	(2 Marks)

QUESTION THREE – (20 MARKS)

(a) Define the following terms	
(i) K-maps	(2 Marks)
(ii) Product term	(2 Marks)

(b)) Convert the following Boolean expressions to a standard sum of product (SoP) form
	(i) $\bar{A} + AB + AB\bar{C}$	(2 Marks)
	(ii) $(AB + A\overline{C} + BC)$	(2 Marks)
(c)	Convert the following Boolean expressions to a standard product of sums	(POS) form
	(i) $(A + B)(\bar{A} + C)$	(2 Marks)
	(ii) $(A + \overline{B} + C)(\overline{B} + C)(A + \overline{C})$	(2 Marks)

(ii) $(A + \overline{B} + C)(\overline{B} + C)(A + \overline{C})$

(d) Given the logic expression

$x = \bar{A}B + \bar{A}\bar{B}\bar{C} + AB\bar{C} + A\bar{B}\bar{C}$	
(i) Convert it to standard SOP form.	(1 Mark)
(ii) Simplify the expression using K-map.	(5 Marks)
(iii)Prove that $AC + ABC = AC$	(2 Marks)

QUESTION FOUR - (20 MARKS)

- (a) Differentiate between combinational and sequential logic circuits. (4 Marks)
- (b) Design the circuit of S R flip –flop using NAND gates.
- (c) Implement a NOT gate (inverter) using NOR gates only. (4 Marks)
- (d) Design logic circuits for the logic expressions
 - (i) $Y = A\overline{B} + A(\overline{B+C})$ (3Marks)

(ii)
$$Y = A(B + \overline{AC})$$
 (3 Marks)

(e) What is race around conditions in flip flops? (3 Marks)

(3 Marks)