

University Examinations 2012/2013

SECOND YEAR, SECOND SEMESTER, EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

ICS 2207: SCIENTIFIC COMPUTING

DATE: DECEMBER 2012

TIME: 2 HOURS

INSTRUCTIONS: Answer question one and any other two questions

QUESTION ONE – 30 MARKS

a. Given a=0.555E01, b=0.4545E01 and c=0.435E01, find a(b – c) using **normalized floating point** with a 6 bit hypothetical computer in which 4 bits are reserved for mantissa and two bits are reserved for exponent.

(2 Marks)

(4 Marks)

(5 Marks)

(3 Marks)

- b. Differentiate between an overflow and an underflow by using appropriate examples in computer arithmetic. (2 Marks)
- c. By using **Lagrange Polynomial**, fit a **second order** interpolating polynomial for the data given below:

Х	2	4	5
F(x)	0.5	0.25	0.2

Hence find the value of F(x) at x = 3

d. Find the LU decomposition of the matrix A below.

$$\mathbf{A} = \begin{pmatrix} 2 & 3 & 5 \\ 3 & 4 & 1 \\ 6 & 7 & 2 \end{pmatrix}$$

Hence or otherwise solve the simultaneous equations below:

2x + 3y + 5z = 233x + 4y + z = 146x + 7y + 2z = 26 e. Use trapezoidal rule with ten strips to estimate.

$$\int_0^{10} \frac{e^2}{1+x^2} \, \mathrm{d}x$$

f. Given the differential equations:

 $\frac{dy}{dx} = 2xy, y(0) = 0.5$, solution required for $1 \ge x \ge 0$

By taking a step size of 0.2, solve the differential equations by **Runge-Kutta's** second order method.

g. Find the smallest root of the following equation by using the **Newton Raphson** method. (5 Marks) $x^3 = 4x + 1 = 0$

QUESTION TWO – 20 MARKS

a.	Solve the system of equations below by matrix inversion method	(8 Marks)
	$2y_1 + y_2 + y_3 = 10$	
	$3y_1 + 2y_2 + 9y_3 = 18$	
	$y_1 + 4y_2 + 9y_3 = 16$	
b.	Derive the Regular –falsi iterative method .	(5 Marks)
c.	Using Gauss Jordan, solve the system of equations below:	(7 Marks)
	$x_1 + 4x_2 - x_3 = -5$	

 $x_1 + x_2 - 6x_3 = -12$ $3x_1 - x_2 - x_3 = 4$

QUESTION THREE – 20 MARKS

a. Given the following data, estimate G(1.85) using **Newton-Gregory Forward Interpolation Polynomial**.

m	1	3	5	7	9
G (m)	0	1.0986	1.6094	1.9459	2.1972

b. The velocity of a car at intervals of 2 minutes is given below:

Time (Minutes)	0	2	4	6	8	10	12
Velocity (Km/hr)	0	22	30	27	18	7	0

Apply **Simpson's** 1/3 rule to find the distance covered by the car in the 12 minutes tabulated above. (6 Marks)

(6 Marks)

(4 Marks)

(5 Marks)

c. Given the equation $x^3 - 4x + 1 = 0$ and taking $x_0 = 0$ and $x_1=1$ perform the first ten iterations in an attempt to solve the equation using **successive bisection method**. Determine the absolute percentage error at the tenth iteration. (8 Marks)

QUESTION FOUR - 20 MARKS

a. For the following table of values:

Х	1	2	3	4
F (x)	1	8	27	64

- i. Find F (2.5) using Lagrange Interpolation with a quadratic interpolating polynomial. (5 Marks)
- ii. Repeat (i) above using a **cubic** interpolating polynomial. (5 Marks)
- iii. Compare the two values obtained by the two methods and comment on the level of accuracy, hence determine the **absolute relative approximate error** and express it as a percentage. (2 Marks)
- b. Solve the equation below by using **Runge-Kutta Fourth Order Method**, using a step of size of 0.2

(8 Marks) $\frac{dy}{dx} = y - \frac{2x}{y}$; y(0) = 1Solution required for $1 \ge x \ge 0$

QUESTION FIVE - 20 MARKS

 $f(x) = x^3 - 3x^2 + x + 1 = 0$

a.	Using Newton-Gregory backward interpolation formula, find Cosh (0.38), given:					n (0.38), given:	(5 Marks)
	Х	0.1	0.2	0.3	0.4		
	CoshX	1.005	1.020	1.0045	1.081		
b.	Using Gauss eli $x_1 + x_2 + x_3 = 3$ $2x_1 + 3x_2 + x_3 =$ $x_1 - x_2 - x_3 = -3$	mination, solv	ve the system	of equations	s below:		(5 Marks)
c.	Solve the equation $\frac{dy}{dx} = y - x^2 + y^2$ Solution require	on below by us - 1; y (0) = 0.5 of for $l \ge x \ge 0$	sing Euler's 1 0	method, usin	ng a step size	of 0.2	(5 Marks)
d.	Using Secant m	ethod, find the	e smallest pos	sitive root of	the following	equation	(5 Marks)