MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 - Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254789151411
Fax: 064-30321
Website: www.must.ac.ke Email: info@mucst.ac.ke

University Examinations 2012/2013

SECOND YEAR, SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOROF SCIENCE IN INFORMATION TECHNOLOGY

SMA 2101: CALCULUS 1

QUESTION ONE (30 MARKS)

a) Find all values of k that make the function $\mathrm{f}(\mathrm{x})$ continuous on the interval $(-\infty, \infty)$.
$f(x)= \begin{cases}k^{2} x^{2}-3 x-1, & \text { if } x<1 \\ 3 k \cos (x-1), & \text { if } x \geq 1\end{cases}$
b) Evaluate;
$\lim _{x \rightarrow 27} \frac{x^{\frac{1}{3}}-3}{x-27}$
c) Given that $y=x^{2} \cos x+x$, find $\frac{d y}{d x}$.
d) Find the equation at the tangent line to the curve $y=x^{2}(x+4)$ at $x=1$.
(4 Marks)
e) Given that $x=2 \sin \theta$ and $y=\cos 2 \theta$, show that $\frac{d^{2} y}{d x^{2}}=-1$.
f) If $2 y^{3}-y+3 x-2=0$, find $\frac{d y}{d x}$ in terms of x and y .
g) Find the coordinates of the turning points on the curve $y=3 x^{3}+6 x^{2}+3 x-1$ and distinguish between them.
h) Evaluate $\int_{1}^{2}\left(x^{2}-1\right)(x+2) d x$ (4 Marks)

QUESTION TWO (20 MARKS)

a) Find the derivatives of the following functions and simplify your answer
i. $y=\frac{\sin x+\cos x}{\sin x-\cos x}$
(4 Marks)
ii. $\quad y=\ln \left(\frac{x^{2}-4}{x^{2}+6}\right)$
b) Given that $y=\frac{5}{x^{2}}$, determine the change in y if x changes from 2.50 to 2.52 .
c) The equation of a curve is given as $y^{4}=4 x^{4}+6 x y$
i. Find the equation of the tangent line to this curve at $(1,2)$.
(4 Marks)
ii. Find the equation of the normal line at $(1,2)$.
d) A missile fired from ground level rises y metres vertically upwards in t seconds according to the law $y=100 t-\frac{25}{2} t^{2}$. Find the time when the height is maximum.
(2 Marks)

QUESTION THREE (20 MARKS)

a) Compute $\lim _{x \rightarrow \infty} \frac{3 x^{2}-7 x+2}{1-x^{3}}$.
b) A function is represented parametrically by the equations
$x=2 t+3 t^{2}$
$y=t^{2}+2 t^{3}$
Find $\frac{d y}{d x}$ and hence show that these equations satisfy the equation $y=\left(\frac{d y}{d x}\right)^{2}+2\left(\frac{d y}{d x}\right)^{3}$.
(5 Marks)
c) Given that $\ln y+\frac{x}{y}=4$, show that $\frac{d y}{d x}=\frac{-y}{y-x}$.
d) Determine the constant B such that $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=4$ where,
$f(x)= \begin{cases}3 x+B, & \text { if } x \leq 4 \\ \frac{x^{2}-16}{x-4}, & \text { if } x>4\end{cases}$
e) Find $\frac{d y}{d x}$ if $y=\log _{3}\left(x^{2}+4\right)$.
(4 Marks)

QUESTION FOUR (20 MARKS)

a) Find points on the curve $y=2 x^{3}$, where the tangent line is parallel to the line $y=13 x+5$
b) The height of an object moving vertically upwards given by the equation
$y=-16 t^{2}+96 t+111$, where y is in metres and t is in seconds.
i. Find the velocity when $\mathrm{t}=0$
ii. Calculate its maximum height.
iii. Calculate velocity when $\mathrm{y}=0$.
c) The price of a certain commodity in dollars per unit at time t (measured in weeks) is given by $P=8+4 e^{-2 t}+t e^{-2 t}$.
i. Find the price of the commodity at $\mathrm{t}=0$.
ii. Find the equilibrium of the commodity.
iii. Calculate the rate of change of the price of the commodity at $\mathrm{t}=0$. (4 Marks)

