

University Examinations 2012/2013

FIRST YEAR, FIRST SEMESTER, EXAMINATION FOR THE DEGREE OF BACHELOR OF BUSINESS INFORMATION TECHNOLOGY AND BACHELOR OF SCIENCE IN COMPUTER SCIENCE

ICS 2101: COMPUTER ORGANIZATION

DATE: DECEMBER 2012

TIME: 2 HOURS

INSTRUCTIONS: Answer question one and any other two questions

QUESTION ONE - 30 MARKS

a.	Show that:		
	(A + B	$(\mathbf{A} + \mathbf{C}) = \mathbf{A} + \mathbf{B}\mathbf{C}$ and ascertain the proof using truth tables .	(6 Marks)
b.	Using	an appropriate diagram briefly discuss memory hierarchy.	(4 Marks)
c.	Express the following memory capacities in bytes:		
	i.	2GB	(1 Mark)
	ii.	0.5TB	(1 Mark)
	iii.	500 Mega Bits	(1 Mark)
d.	. Briefly explain the following:		
	i.	Programmed I/O	(2 Marks)
	ii.	I/O Processor	(2 Marks)
e.	Using	an appropriate diagram, describe the instruction cycle.	(3 Marks)
f.	What do you understand by the term "bus" as used in computer systems? Identify the three types of		types of
	system	buses in the CPU and briefly describe each of them.	(3 Marks)
g.	By usi	ng circuits, symbols and truth tables, distinguish an AND gate from an OR gate.	(4 Marks)
h.	Given the infix expression $Z \leftarrow (A^*B) + (W^*Y)$		
	i.	Express the infix expression above in postfix notation; hence show the stack operate	ions for the
		processing of the expression.	(2 Marks)
	ii.	Using two address instruction set architecture; use the requisite mnemonics to she	ow the
		processing of the above infix expression.	(2 Marks)

QUESTION TWO – 20 MARKS

a. Given the Boolean expression below:

AB + A(B+C) + B(B+C)

b.

c.

i.	Simplify the Boolean expression to a minimum number of literals	(4 Marks)	
ii.	Draw logic gate circuits for the initial expression and the simplified equivalent.	(3 Marks)	
iii.	Use truth tables to proof that the two logic circuits are equivalent.	(3 Marks)	
Disting	guish between computer organization and computer architecture and provide relev	ant	
applications of each. (2 Marks)			
Briefly discuss the following:			
i.	Instruction pre-fetching	(2 Marks)	
ii.	Pipelining	(2 Marks)	
iii.	Memory address map	(2 Marks)	
iv.	Program status word	(2 Marks)	

QUESTION THREE – 20 MARKS

a. Define the following addressing modes and give one example of each of them in assembly language.

	i. In	nmediate addressing	(2 Marks)
i	i. D	irect addressing	(2 Marks)
b.	Conv	ert the following into reverse polish notation.	(2 Marks)
	A + B	B * (C*D + E* (F + G))	
c.	Expla	in any four instruction set design issues.	(4 Marks)
d. Using a state diagram, explain the instruction cycle that has an interrupt. ((6 Marks)	
e.	Expla	in the following terms:	
	i.	Cache miss	(1 Mark)
	ii.	Pipeline conflict	(1 Mark)
	iii.	Delayed load	(1 Mark)

iv. Virtual memory (1 Mark)

QUESTION FOUR - 20 MARKS

a.	In order to compare different types of memories, their characteristics need to be considered, in this		
	respect, discuss the characteristics given below:		
	i. Access methods	(2 Marks)	
	ii. Performance	(2 Marks)	
b.	With the aid of a diagram, describe the general structure of an I/O module and explain its	s functions.	
		(5 Marks)	
c.	Explain stack and evaluate the following expression using stack: $(3 + 4)*[10(2 = 6) + 8]$	(5 Marks)	
d.	. A combinational logic structure is constructed from decision elements only. Using the requisite		
	diagrams the functioning of the following:		
	i. Decoder	(4 Marks)	
	ii. Multiplexer	(4 Marks)	
Q	JESTION FIVE – 20 MARKS		
a.	Describe the following methods of enhancing CPU performance:		
	i. Hyper threading	(4 Marks)	
	ii. Dual core	(4 Marks)	
b.	Describe the following CPU support chips:		
	i. DMA	(2 Marks)	
	ii Real Time Clock (RTC)	(2 Marks)	

	11.	Keal Time Clock (RTC)	(2 Marks)
c.	Give a	an elaborate description of interrupt driven I/O.	(4 Marks)

d. Draw a logical network that implements the following equations:

i.	$Z = \overline{(A+B)}$	(2 Marks)
ii.	$Z = \overline{A}. \ \overline{B}$	(2 Marks)