MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411 Fax: 064-30321 Website: www.must.ac.ke Email: info@mucst.ac.ke

University Examinations 2012/2013

SECOND YEAR, FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY

ICS 2211: NUMERICAL LINEAR ALGEBRA

DATE: AUGUST 2013

INSTRUCTIONS: Answer question **one** and any other **two** questions

QUESTION ONE (30 MARKS)

- a) i) Show that if A and B are invertible square matrices of the same order, then AB is also invertible and $[AB]^{-1} = B^{-1}A^{-1}$. (6 Marks)
 - ii) Using Gauss Jordan method, find the inverse of the matrix
 - $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ (5 Marks)
- b) i) Using Gauss elimination method find the solution of the following system of linear equations

$x_1 - x_2 + x_3 = 4$	
$2x_1 + x_2 - 3x_3 = 0$	
$x_1 + x_2 + x_3 = 2$	(10 Marks)

- ii) Find the Eigen values and Eigen vectors of the matrix.
- $A = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ 3 & 3 & -1 \end{bmatrix}$ (9 Marks)

QUESTION TWO (20 MARKS)

· · · · · /

- a) Prove that if the inverse of a square matrix exists, then it is unique. (5 Marks)
- b) Using the Partition method, find the solution of the linear system of equations below

TIME: 2 HOURS

$$x_1 + x_2 + x_3 = 1$$

$$4x_1 + 3x_2 - x_3 = 6$$

$$3x_1 + 5x_2 + 3x_3 = 4$$
 (15 Marks)

QUESTION THREE (20 MARKS)

Given the matrix $A = \begin{bmatrix} 3 & 2 & 2 \\ 1 & 3 & 1 \\ 5 & 3 & 4 \end{bmatrix}$ i. Find |A| (3 Marks) ii. Find A^{-1} (10 Marks) iii. Find the matrix B such that $AB = \begin{bmatrix} 3 & 4 & 2 \\ 1 & 6 & 1 \\ 5 & 6 & 4 \end{bmatrix}$ (7 Marks)

QUESTION FOUR (20 MARKS)

Find the eigenpairs \times_i and V_i for the matrix

 $A = \begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$

Also show that the eigenvectors are linearly independent. (20 Marks)

QUESTION FIVE (20 MARKS)

a)	Given the system of linear equations			
	x + y + z = 6			
	x + 2y + 3z = 10			
	$x + 2y + x = \mu$			
	Find the values of \times and μ for which the linear system has			
	i.	No solution	(3 Marks)	
	ii.	A unique solution	(3 Marks)	
	iii.	Infinite solution	(4 Marks)	
b)	b) Find the solution to the linear system			
	$2x_1 + 3x_2 - x_3 = 4$			
	$x_1 - 2x_2 + x_3 = 6$			
	$x_1 - 12x_2 + 5x_3 = 10$			
	By Cramer's Rule.			