TECHNICAL UNIVERSITY OF MOMBASA A Centre of Excellence

Department of Electrical & Electronic Engineering

<u>TEST</u>	'1	3 rd November 2011	Time: 2 hours
1. (a)	A lossless transmission line of characteristic impedance 75 is terminated in a load of $75 + j150\Omega$. If the line is 1m long and the signal frequency is 1 GHz, find the:		
	(i)	Reflection coefficient at the load	
	(ii)	Normalized load admittance	
	(iii)	VSWR	
	(iv)	Input impedance	(20 Marks)
2. (a)	Consider the transmission line in figure (Qu.1a).Given : Vg = $15V_{RMS}$; Z ₀ =75 ; Zg =75 ;		
	$Z_L = 50 - J100$ and the length $I = \lambda$. Determine:		
	(v)	Reflection coefficient at the load	
	(vi)	Reflection coefficient along the line	
	(vii)	Voltage along the line	
	(viii)	Maximum line voltage	
	(ix)	Minimum line voltage	
	(x)	SWR	(20 Marks)
		$V_{g} \bigcirc Z_{ia} \Longrightarrow Z_{0} \longrightarrow V_{L}$	Z _L

Figure (Qu.1a)

3. Prove mathematically that the input impedance of a short-circuited length of transmission line $_{g}/8$ long is equal to $+JZ_{o}$, while the input impedance of an open-circuited length of transmission line $_{g}/8$ long is equal to $-JZ_{o}$. Check your answers with a Smith chart.

(10 marks)