EEE23 APRII	814 2 19 TH	: TRANSMISSION LINES 2014	CAT II TIME : 2 HOURS
ATTEMPT ALL QUESTIONS			
1. (a)	A lossi 75 + <i>j</i> 1	ess transmission line of characteristic impedance 75 $$ is 50 Ω . If the line is 1m long and the signal frequency is 1 G	terminated in a load of GHz, find the:
	(i) (ii) (iii)	Reflection coefficient at the load Normalized load admittance VSWR	

2. (a) Determine the input impedance of the transmission line in Figure (Qu.2a). (6 marks)

(20 Marks)

Input impedance

(iv)

- (b) Determine the input impedance of the transmission line in Figure (Qu.2b). (Hint: consider the second transmission line first, de-normalize the load at point A obtaining the new load for the first transmission line and normalize again using the characteristic impedance of the first line.) (14 marks)
- 3. (a) The load impedance $Z_L = 20 + J10\Omega$ is to be matched to a 50 line by a $\lambda/4$ length of loss free line. Calculate the position and impedance of the matching section (6 marks)
 - (b) Using any analytical means at your disposal confirm that the $\lambda/4$ section of transmission line actually matches the transmission line to the load. (4 marks)
 - 3. (c) Match a line with a characteristic impedance of 72 to a load of $120 j100\Omega$ using a parallel short-circuited stub. (10 Marks)