BPY 1101 BASIC ELECTRICITY AND OPTICS

CAT 1 [30 MARKS]

TIME: $1 ½$ HOURS
Instruction: Attempt ALL questions_in CAT I \& II
a) The charge in a certain body is determined to be $+0.6 \mu \mathrm{C}$. Determine the number of electrons needed to neutralize the body.
Solution:
$+1 \mathrm{C}=10^{6} \mu \mathrm{C}$ of charge consists of 6.25×10^{18} protons.
Let the number of protons be N_{p}
Therefore, for $+0.6 \mu \mathrm{C}$ of charge
$N_{p}=\frac{0.6}{10^{6}} \times 6.25 \times 10^{18}=3.75 \times 10^{12}$ protons
Number of electrons $\left(N_{e}\right)$ needed must be equal to the number of excess protons. Hence, $N_{e}=3.75 \times 10^{12}$ electrons.
[1 mark]
b) State the four factors that affect the resistance of a conductor.
[4 marks]
Solution:
The resistance R offered by a conductor depends on the following factors:
(i) The length of the conductor
[1 mark]
(ii) the cross-sectional area A of the conductor
[1 mark]
(iii) the nature of the material
[1 mark]
(iv) the temperature of the conductor
[1 mark]
c) Silicon atom has $\mathrm{Z}=29$. Give its electronic distribution indicating which orbits are full and which are not.
[2 marks]

Solution:

Since atomic number represents protons, then the number of electrons is also 29. Thus the distribution is:-

K-orbit	2 electrons	full
L-orbit	8 electrons	full
M-shell	18 electrons	full
N-shell	1 electron	incomplete
Total	29 electrons	

d) For the arrangement shown in the diagram, find
(i) The equivalent capacitance of the circuit
(ii) The voltage across QR
(iii)The charge on each capacitor
[12 marks]

Solution:

(i) The equivalent capacitance of the circuit

$$
\begin{aligned}
& \frac{1}{C_{e q}}=\frac{1}{2+3}+\frac{1}{15}=\frac{1}{5}+\frac{1}{15}=\frac{3+1}{15}=\frac{4}{15} \text { or } \\
& C_{e q}=\frac{15}{4} \mu F=3.75 \mu F
\end{aligned}
$$

[2 marks]
(ii) The voltage across $Q R$

The charge flowing in the circuit is given by
$Q=C_{e q} V=\left(3.75 \times 10^{-6}\right)(240)=9 \times 10^{-4} C$
Voltage across $Q R$ is given by

$$
V_{Q R}=\frac{Q}{15 \times 10^{-6}}=\frac{9 \times 10^{-4}}{15 \times 10^{-6}}=60 \mathrm{~V}
$$

(iii)The charge on each capacitor

Voltage across the capacitor connected in parallel is
$V_{p}=V-V_{Q R}=240-60=180 \mathrm{~V}$
[2 marks]
Charge on $2 \mu F$ capacitor is

$$
Q_{2 \mu F}=(2 \mu F)\left(V_{p}\right)=\left(2 \times 10^{-6}\right)(180)=3.6 \times 10^{-4} \mathrm{C}
$$

[2 marks]
Charge on $3 \mu F$ capacitor is

$$
\begin{equation*}
Q_{2 \mu F}=(2 \mu F)\left(V_{p}\right)=\left(3 \times 10^{-6}\right)(180)=5.4 \times 10^{-4} \mathrm{C} \tag{2marks}
\end{equation*}
$$

The charge on $15 \mu F$ capacitor is

$$
\begin{equation*}
Q=C_{e q} V=\left(3.75 \times 10^{-6}\right)(240)=9 \times 10^{-4} \mathrm{C} \tag{2marks}
\end{equation*}
$$

e) A coil is would from a 10 m length of copper wire having a cross-sectional area of $1 \mathrm{~mm}^{2}$. Calculate the resistance of the coil. Take the specific resistance of copper as $1.73 \times 10^{-8} \Omega-m$.
[3 marks]

Solution:

$$
R=\rho \frac{l}{A}=\left(1.73 \times 10^{-8}\right) \frac{10}{1 \times 10^{-6}}=0.173 \Omega
$$

f) A small sphere is given a charge of $+20 \mu \mathrm{C}$ and a second sphere of equal diameter is given a charge of $-5 \mu \mathrm{C}$. The two spheres are allowed to touch each
other and are then spaced 10 cm apart. What force exists between them? What electric field is being radiated by the $+20 \mu \mathrm{C}$ sphere?. Assume air as the medium.
[6 marks]

Solution:

When the two spheres touch each other, the resultant charge is:
$=20+(-5)=15 \mu \mathrm{C}$
[1 mark]
When the spheres are separated, charge on each sphere is:
$\mathrm{Q}_{1}=\mathrm{Q}_{2}=\frac{15}{2} \mu \mathrm{C}=7.5 \mu \mathrm{C}$
[1 mark]
Hence, force between is
$F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} \varepsilon_{r} r^{2}}=\frac{\left(9 \times 10^{9}\right)\left(7.5 \times 10^{-6}\right)\left(7.5 \times 10^{-6}\right)}{1 \times(0.1)^{2}}=50.56 \mathrm{~N}$ repulsive
[2 marks]
Electric Field $E=\frac{F}{Q}=\frac{50.56}{7.5 \times 10^{-6}}=6.74 \times 10^{6} \mathrm{~N} / \mathrm{C}$
[2 marks]

CAT 2 [25 MARKS]

a) For the circuit shown in Fig. Q a), find
(i) the total circuit resistance
(ii) the supply current
(iii)the current through each resistor
(iv) the voltage across each resistor
[9 marks]

Solution:

Let the voltages be in the circuit as shown below. Hence,

(i) the total circuit resistance

$$
\begin{aligned}
R_{T} & =R_{1}+\frac{R_{2} R_{3}}{R_{2}+R_{3}}+R_{4} \\
& =2.5+\frac{6 \times 2}{6+2}+4 \\
& =2.5+1.5+4 \\
& =8 \Omega
\end{aligned}
$$

(ii) the supply current

$$
I=\frac{V}{R_{T}}=\frac{200}{8}=25 \mathrm{~A}
$$

(iii)the current through each resistor

$$
\begin{aligned}
& I_{1}=\left(\frac{R_{3}}{R_{2}+R_{3}}\right) I=\left(\frac{2}{6+2}\right) 25 \mathrm{~A}=6.25 \mathrm{~A} \\
& I_{2}=\left(\frac{R_{2}}{R_{2}+R_{3}}\right) I=\left(\frac{6}{6+2}\right) 25 \mathrm{~A}=18.75 \mathrm{~A}
\end{aligned}
$$

Current through R_{1} is $I=25 \mathrm{~A}$
Current through R_{4} is $I=25 \mathrm{~A}$
(iv) the voltage across each resistor

$$
\begin{array}{ll}
V_{1}=R_{1} I=(25) 2.5=62.5 \mathrm{~V} & \text { [1 mark }] \\
V_{2}=\left(R_{2}\right) I_{1}=(6.25) 6=37.5 \mathrm{~V} & {[1 \text { mark }]} \\
V_{3}=\left(R_{4}\right) I=(25) 4=100 \mathrm{~V} & {[1 \text { mark }]}
\end{array}
$$

b) A coil of 12Ω resistance is in parallel with a coil of 20Ω resistance. This combination is connected in series with a third coil of 8Ω resistance. If the whole circuit is connected across a battery having a e.m.f. of 30 V , calculate
i) the terminal voltage of the battery and
ii) the power in the 12Ω coil.
iii) currrent flowing in each resistor

Solution:

i) The terminal voltage of battery is 30 V since it does not have internal resistance
ii) Total circuit resistance is $R_{T}=R_{1}+\frac{R_{2} R_{3}}{R_{2}+R_{3}}$

$$
=8+\frac{12 \times 20}{12+20}=15.5 \Omega
$$

Circuit current is $I=\frac{V}{R_{T}}=\frac{30}{15.5}=1.94 \mathrm{~A}$
[1 mark]
Current through the $12 \Omega, I_{1}=\left(\frac{20}{12+20}\right) I=\left(\frac{20}{12+20}\right) \times 1.71=1.2125 \mathrm{~A}$
[1 mark]

Current through the $20 \Omega, I_{2}=\left(\frac{12}{12+20}\right) I=\left(\frac{12}{12+20}\right) \times 1.94=0.7275 \mathrm{~A}$ [1 mark]
iii) Power in the $12 \Omega, P_{R_{2}}=R_{2} I_{1}^{2}=12(1.2125)^{2}=17.64 \mathrm{~W}$
[1 mark]
c) State the Kirchhoff's laws.
(i) Kirchhoff's Current Law (KCL): It states that in any network of conductors, the algebraic sum of currents meeting at a point (or a junction) is zero i.e. the total current leaving a junction is equal to the total current entering that junction.
[11/2 marks]
(ii) Kirchhoff's Voltage Law: It states that the algebraic sum of all IR drops and emfs in any closed loop (or mesh) of a network is zero i.e.
d) Use Kirchhoff's laws to obtain the values of I_{1} and I_{2} in Fig Q d).

Solution:

Applying KVL to the first loop of Fig. 2, we get
$-2700 I_{1}-3300\left(I_{1}-I_{2}\right)-4700 I_{1}+20=0$
$10700 I_{1}-3300 I_{2}=100$------------------[i]
[2 marks]
Applying KVL to the second loop of Fig.2, we get
$-5600 I_{2}-2700 I_{2}+3300\left(I_{1}-I_{2}\right)=0$
$3300 I_{1}-11600 I_{2}=0$-------------------[ii]
[2 marks]
Solving equation [i] and [ii] for the currents, have
$I_{2}=2.91 \times 10^{-3} \mathrm{~A}$
[1 mark]
$I_{1}=0.0102 \mathrm{~A}$
[1 mark]

