

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICAL & ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR THE MASTERS DEGREE IN APPLIED MATHEMATICS

1ST YEAR 1ST SEMESTER 2013/2014 ACADEMIC YEAR

CENTRE: MAIN SCHOOL BASED

COURSE CODE: SMA 840

COURSE TITLE: METHODS OF APPLIED MATHEMATICS

EXAM VENUE: STREAM: (MSc.)

DATE: 29/4/2014 EXAM SESSION: 9.00 – 12.00 NOON

TIME: 3 HOURS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

Question1[20 marks]

(a) Solve the system of ordinary differential

equations
$$\frac{dx}{dt} + \frac{dy}{dt} + y + x = 1$$
, $\frac{dy}{dt} - 2x - y = 0$: $x(0) = 0$, $y(0) = 1$ [14 marks]

(b) An electrical circuit gives rise to the system

$$LI_1' + RI_1 + \frac{q}{C} = E_0(t).$$

$$LI_2' + RI_2 - \frac{q}{C} = 0.$$

$$q' - I_1 + I_2 = 0$$

If initially the charge q is zero, and the currents $I_1(0) = I_2(0) = \frac{E_0}{2R}$, solve the system. [6 marks]

Question2[20 marks]

(a) Evaluate the integral $\int_{H} \frac{dz}{\left(z^2 - 8z + 25\right)^4}$ where H is a semi circle in the lower half plane big enough

to contain all poles of this integrand with negative imaginary part. [16 marks]

(b) Obtain solution to the initial value problem

$$xy'' + (1-x)y' + 4y = 0$$
; satisfying $y(0) = e^{-300}$, $y'(0) = e^{12}$ [4 marks]

1

Question3 [20 marks]

(a) Show that $y_1 = \begin{bmatrix} -4,5,7 \end{bmatrix}^t$, $y_2 = \begin{bmatrix} -3,4,2 \end{bmatrix}^t$ are eigenvectors of

the matrix
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ -8 & -5 & -3 \end{pmatrix}$$
.

(b) Find e^{At} , the exponential matrix of A

(c) Verify that
$$\left[e^{At}\right]_{t=0} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Question4 [20 marks]

Given the system of first order ordinary linear differential equations $\dot{X} = AX + \underline{F}(t)$ where

$$A = \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix}, \underline{F}(t) = \begin{bmatrix} e^t \\ e^{-t} \end{bmatrix}$$

(a) Find the fundamental matrix $\Phi(t)$ of the system.

[10 marks]

(b) (i) Evaluate the matrix $\left[\Phi(t)\Phi^{-1}(0)\right]_{(t=0)}$. (ii) Deduce X the general solution of the system $\dot{X} = AX + F(t)$. [10 marks]

Question5 [20 marks]

An elliptic partial differential equation is defined in the region $\Omega = \{0 < x < a, 0 < y < b\}$ by

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + 2\frac{\partial u}{\partial x} = f(x, y) \quad in \quad \Omega: \qquad 0 < x < a, \quad 0 < y < b$$
 (i)

u = g(x, y) on S; S is the boundary of Ω

Determine the Green's function $G(x, y; \langle y)$ for the elliptic partial differential equation.

[20 marks]

LAPLACE TRANSFORMS TABLE

LAPLACE TRANSFORMS TABLE	
$\cos bt$	$\frac{s}{s^2+b^2}$
$\sin bt$	$\frac{b}{s^2+b^2}$
$e^{-at}\sin bt$	$\frac{b}{(s+a)^2 + b^2}$ $\frac{(s+a)}{(s+a)^2 + b^2}$ $\frac{\Gamma(n+1)}{(s+a)^{n+1}} \qquad n > -1$
$e^{-at}cosbt$	$\frac{(s+a)}{(s+a)^2+1^2}$
$e^{-at}t^n$	$\frac{\Gamma(n+1)}{\Gamma(n+1)} \qquad n > -1$
	$ (s+a)^{n+1} $ $ n! $
t^n	$\frac{n!}{s^{n+1}}$
$e^{-at}t^n$	$\overline{\left(s+a\right)^{n+1}}$
$\frac{dy}{dt}$	$\frac{n!}{(s+a)^{n+1}}$ $sY - y_0 ; Y = L(y)$ $s^2Y - sy_0 - y_0' ; Y = L(y)$
$\frac{\dot{z}}{dt^2}$	$\frac{1}{\sqrt{s^2+1}}$
$J_{0}\left(t ight)$	
$t \sin bt$	$\frac{2bs}{\left(s^2+b^2\right)^2}$ $\frac{s^2-b^2}{\left(s^2+b^2\right)^2}$
tcosbt	$\frac{s^2-b^2}{(s^2+b^2)^2}$
	(5 10)

$$L\left[\frac{f(t)}{t}\right] = \int_{t}^{\infty} F(s)ds : L\{f(t)\} = F(s)$$

$$L^{-1}\left[L\{f(t)\}L\{g(t)\}\right] = \int_{0}^{1} f(\})g(t-\})d\},$$

f(t)	Laplace transform of $f(t)$
	1
$J_0(t)$	$\sqrt{s^2+1}$
	$\frac{1}{\sqrt{s^2 + 1}}$ $\frac{b}{s^2 + b^2}$
$\sin bt$	s^2+b^2
Y 470	
$L_m(x) = \frac{e^x}{m!} \frac{d^m}{dx^m} (x^m e^{-x}) m = 0, 1, 2,$	
$e^{-at}\sin bt$	$ \frac{(s-1)^m}{s^{m+1}} $ $ \frac{b}{(s+a)^2 + b^2} $ $ \frac{(s+a)}{(s+a)^2 + b^2} $ $ \frac{\Gamma(n+1)}{(s+a)^{n+1}} \qquad n > -1 $ $ \frac{n!}{s^{n+1}} $
	$\frac{(s-1)^m}{s}$
$e^{-at}\cos bt$	S^{m+1}
at n	$\frac{b}{(-1)^2+2}$
$e^{-at}t^n$	$(s+a)+b^2$
t^n	$\frac{(s+a)}{}$
	$\left(s+a\right)^2+b^2$
	$\Gamma(n+1)$
$e^{-at}t^n$	$\left(\frac{1}{(s+a)^{n+1}}\right)^{n+1}$
$\frac{dy}{dt}$	n!
dt	$\overline{s^{n+1}}$
$\frac{d^2y}{dt^2}$	n!
dt^2	$\left(s+a\right)^{n+1}$
	$sY - y_0 Y = L(y)$
	$\frac{n!}{(s+a)^{n+1}}$ $sY - y_0 \qquad Y = L(y)$ $s^2Y - sy_0 - y_0' \qquad Y = L(y)$

sU(x,s)-u(x,0)
$s^{2}U(x,s)-su(x,0)-u_{t}(x,0)$
$\frac{dU\left(x,s\right)}{dx}$
$\frac{d^2U\left(x,s\right)}{dx^2}$
$s\frac{dU(x,s)}{dx} - \frac{du(x,0)}{dx}$
S

 $J_0(t)$ is the Bessel function of order zero.

 $L_m(x)$ is the Laguerre's function of order m

$$L^{-1}\left\{W\left(s\right)\right\} = e^{-at}L^{-}\left\{W\left(s-a\right)\right\}, L\left\{e^{-at}f\left(t\right)\right\} = L\left\{f\left(t\right)\right\}_{s \to s+a}$$
LAPLACE TRANSFORMS