JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICAL \& ACTUARIAL SCIENCE

UNIVERSITY EXAMINATION FOR THE BACHELORS DEGREE

$2^{\text {ND }}$ YEAR $1^{\text {ST }}$ SEMESTER 2013/2014 ACADEMIC YEAR

CENTRE: MAIN

COURSE CODE: SMA 201
COURSE TITLE: LINEAR ALGEBRA II
EXAM VENUE: AH
STREAM: (BSc. Actuarial, Bed,B Sc)
DATE: 16/4/2014
EXAM SESSION: 9.00-11.00 AM
TIME: 2 HOURS

Instructions:

1. Answer question 1 (Compulsory)and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

Question1 [30marks] Compulsory

(a) Let $P_{n \times n}$ be a real square matrix.
(i)Define what is meant by $P_{n \times n}$ is orthogonal.
(ii) Let $P=\left(\begin{array}{ccc}3 & -4 & 0 \\ 0 & 0 & 9 \\ 4 & 3 & 0\end{array}\right)$ be a real square matrix.

Prove that P is orthogonal with respect to the standard inner product of R^{3} hence find P^{-1}, and \hat{P} the orthonormalized form of P.
(b) Given the mapping $L: R^{2} \rightarrow R^{2}$ with $L\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x-y \\ x+y\end{array}\right]$ is a linear operator on R^{2}.
(i) Determine ker (L) (ii) Find A_{L}, the matrix of L
(iii) Describe the rule for L^{-1} which is the inverse of L
(c) Without using direct computation , show that $\left(\begin{array}{l}-17 \\ -34 \\ 34\end{array}\right),\left(\begin{array}{l}10 \\ 10 \\ 0\end{array}\right),\left(\begin{array}{l}-1 \\ 0 \\ -1\end{array}\right)$ are eigenvectors of
the matrix $A=\left(\begin{array}{lrr}1 & -4 & -4 \\ 8 & -11 & -8 \\ -8 & 8 & 5\end{array}\right)$. Give the associated eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ of this matrix.
Verify that $\operatorname{trace}(A)=\lambda_{1}+\lambda_{2}+\lambda_{3}$
[9 marks]
(d) Show that matrix $A=\left(\begin{array}{cc}1 & -4 \\ -9 & 1\end{array}\right)$ is diagonalizable but do not diagonalize A.

Question2 [20marks]

Let $A=\left[\begin{array}{llr}0 & 2 & -1 \\ 2 & 3 & -2 \\ -1 & -2 & 0\end{array}\right]$ define a matrix of linear operator T on R^{3}
(a) Find the characteristic polynomial of A. (5 marks)
(b) Without doing an eigenvalue-eigenvector computation, show that the vectors $u=\left[\begin{array}{l}-2 \\ 1 \\ 0\end{array}\right], v=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ are eigenvectors of A.
[5 marks]
(c) Determine w the remaining eigenvector of A. (5 marks)
(d) Diagonalize matrix A.
[5 marks]

Question3 [20marks]

(a) Let f be the form on $V \times V$ such that V is a real vector space. Define $A=\left(a_{i j}\right)$, the matrix of f w.r.t an ordered basis $\beta=\left\{\beta_{1}, \beta_{2},,, \beta_{n}\right\}$ by $A=\left(a_{i j}\right)=f\left(\beta_{i}, \beta_{j}\right) i, j=1,2,,, n$.

Suppose f is a form on R^{2} defined by $f\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=x_{1} y_{1}+4 x_{2} y_{2}+2 x_{1} y_{2}+2 x_{2} y_{1}$.
Find the matrix of f in each of the bases
(i) $\{[1,-1],[1,1]\}$
(ii) $\{[1,0],[0,1]\}++++$
[12 marks]
(b) Prove that the set 4by4 matrices $\left\{\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\right\}$ is linearly independent.
[8 marks]

Question4 [20 marks]

Consider the vector space of R^{4} with the inner product \langle,$\rangle :$
$\langle\underline{x}, \underline{y}\rangle=\frac{1}{2} x_{1} y_{1}+\frac{1}{2} x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4} ; \underline{x}=\left[x_{1}, x_{2}, x_{3}, x_{4}\right], \underline{y}=\left[y_{1}, y_{2}, y_{3}, y_{3}\right], x, y \in R^{4}$
(a)Apply the Gram-Schmidt process to the set of linearly independent vectors
$\left\{v_{1}=[1,1,-1,-1], v_{2}=[1,1,1,1], v_{3}=[-1,-1,-1,1], v_{4}=[1,0,0,1]\right\}$
to obtain orthogonal basis $\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$.
(b) Obtain an orthonormal basis $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\} \mathrm{f}$ or R^{4}.

Question5 [20 marks]

Let W be the space of all 3×3 matrices A over R which are skew- symmetric i.e., $A^{t}=-A$.
We equip W with the inner product $[A * B]=\frac{1}{2} \operatorname{tr}\left[A B^{t}\right]$. Let V be the vector space R^{3} with the standard inner product. If T be the mapping from V into W defined by
$T(x, y, z)=\left[\begin{array}{lcr}0 & -z & y \\ z & 0 & -x \\ -y & x & 0\end{array}\right]$ i.e. $T: V \rightarrow W$
(a)Show that $T[u+k v]=T u+k T v \quad$ for $\quad u, v \in R^{3}$
[4 marks]
(b) Prove that T preserves the inner products V onto W

