

# JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICAL & ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR THE BACHELORS DEGREE 2<sup>ND</sup> YEAR 1<sup>ST</sup> SEMESTER 2013/2014 ACADEMIC YEAR

## **CENTRE: MAIN**

COURSE CODE: SMA 201 COURSE TITLE: LINEAR ALGEBRA II EXAM VENUE: AH STREAM: (BSc. Actuarial, Bed,B Sc) DATE: 16/4/2014 EXAM SESSION: 9.00 – 11.00 AM TIME: 2 HOURS

**Instructions:** 

- 1. Answer question 1 (Compulsory)and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

#### **Question1** [30marks] Compulsory

- (a) Let  $P_{n \times n}$  be a real square matrix.
- (i)Define what is meant by  $P_{n \times n}$  is orthogonal.
- (ii) Let  $P = \begin{pmatrix} 3 & -4 & 0 \\ 0 & 0 & 9 \\ 4 & 3 & 0 \end{pmatrix}$  be a real square matrix.

Prove that *P* is orthogonal with respect to the standard inner product of  $R^3$  hence find  $P^{-1}$ , and  $\hat{P}$  the orthonormalized form of *P*. [8 marks]

- (b) Given the mapping  $L: \mathbb{R}^2 \to \mathbb{R}^2$  with  $L\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x y \\ x + y \end{bmatrix}$  is a linear operator on  $\mathbb{R}^2$ .
- (i) Determine ker (L) (ii) Find  $A_L$ , the matrix of L
- (iii) Describe the rule for  $L^{-1}$  which is the inverse of L

(c) Without using direct computation, show that 
$$\begin{pmatrix} -17 \\ -34 \\ 34 \end{pmatrix}$$
,  $\begin{pmatrix} 10 \\ 10 \\ 0 \end{pmatrix}$ ,  $\begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}$  are eigenvectors of

the matrix 
$$A = \begin{pmatrix} 1 & -4 & -4 \\ 8 & -11 & -8 \\ -8 & 8 & 5 \end{pmatrix}$$
. Give the associated eigenvalues  $\{1, 3, 2, 3\}$  of this matrix.  
Verify that  $trace(A) = \{1, 4, -4 \\ -8 & 8 & 5 \end{pmatrix}$ . [9 marks]

(d) Show that matrix 
$$A = \begin{pmatrix} 1 & -4 \\ -9 & 1 \end{pmatrix}$$
 is diagonalizable but do not diagonalize A. [5 marks]

## Question2 [20marks]

Let 
$$A = \begin{bmatrix} 0 & 2 & -1 \\ 2 & 3 & -2 \\ -1 & -2 & 0 \end{bmatrix}$$
 define a matrix of linear operator  $T$  on  $R^3$ 

(a) Find the characteristic polynomial of A. (5 marks)



[8 marks]

(c) Determine w the remaining eigenvector of A. (5 marks)

(d) Diagonalize matrix A.

### Question3 [20marks]

(a) Let *f* be the form on  $V \times V$  such that *V* is a real vector space. Define  $A = (a_{ij})$ , the matrix of *f* w.r.t an ordered basis  $S = \{S_1, S_2, .., S_n\}$  by  $A = (a_{ij}) = f(S_i, S_j)i, j = 1, 2, .., n$ . Suppose *f* is a form on  $R^2$  defined by  $f((x_1, x_2), (y_1, y_2)) = x_1y_1 + 4x_2y_2 + 2x_1y_2 + 2x_2y_1$ . Find the matrix of *f* in each of the bases (i)  $\{[1,-1], [1,1]\}$  (ii)  $\{[1,0], [0,1]\}$  ++++ [12 marks] (b) Prove that the set 4by4 matrices  $\begin{cases} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{cases}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 - 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$  is linearly independent. [8 marks]

### Question4 [20 marks]

Consider the vector space of  $R^4$  with the inner product  $\langle , \rangle$ :

$$\langle \underline{x}, \underline{y} \rangle = \frac{1}{2} x_1 y_1 + \frac{1}{2} x_2 y_2 + x_3 y_3 + x_4 y_4; \ \underline{x} = [x_1, x_2, x_3, x_4], \ \underline{y} = [y_1, y_2, y_3, y_3], \ x, y \in \mathbb{R}^4$$
(a) Apply the Gram-Schmidt process to the set of linearly independent vectors
$$\{ v_1 = [1, 1, -1, -1], v_2 = [1, 1, 1, 1], v_3 = [-1, -1, -1, 1], v_4 = [1, 0, 0, 1] \}$$
to obtain orthogonal basis  $\{ w_1, w_2, w_3, w_4 \}.$ 
(b) Obtain an orthonormal basis  $\{ u_1, u_2, u_3, u_4 \}$  f or  $\mathbb{R}^4$ .
$$[16 \text{ marks}]$$

#### Question5 [20 marks]

Let *W* be the space of all  $3 \times 3$  matrices *A* over *R* which are skew- symmetric *i.e.*,  $A^t = -A$ . We equip *W* with the inner product  $[A * B] = \frac{1}{2}tr[AB^t]$ . Let *V* be the vector space  $R^3$  with the standard inner product. If *T* be the mapping from *V* into *W* defined by

$$T(x, y, z) = \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix} i.e. T: V \to W$$
  
(a)Show that  $T[u + kv] = Tu + kTv$  for  $u, v \in \mathbb{R}^3$  [4 marks]

(b) Prove that T preserves the inner products V onto W

[4 marks]

[5 marks]