JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICAL \& ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR THE BACHELORS DEGREE

$$
\begin{aligned}
& 2^{\mathrm{ND}} \text { YEAR } 1^{\text {ST }} \text { SEMESTER 2013/2014 ACADEMIC YEAR } \\
& \text { CENTRE: MAIN }
\end{aligned}
$$

COURSE CODE: SMA 200
COURSE TITLE: CALCULUS II
EXAM VENUE: AH
STREAM: (BSc. Actuarial, Bed,B Sc)
DATE: 14/4/2014
EXAM SESSION: 9.00-11.00 AM
TIME: 2 HOURS

Instructions:

1. Answer question 1 (Compulsory)and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (COMPULSORY) (30 marks)

a) If $y^{\prime}=f^{\prime}(x)=2 x^{2}+x-1$ and $f(0)=0$, then determine a relation in y and x. (4 marks)
b) Evaluate the integral

$$
\begin{equation*}
\int \sqrt{1+\sin 2 x} d x \tag{5marks}
\end{equation*}
$$

c) Verify by differentiation that the formula is correct:

$$
\int \frac{1}{\sqrt{a^{2}+x^{2}}} d x=\log \left|x+\sqrt{a^{2}+x^{2}}\right|+C
$$

d) Evaluate the improper integral

$$
\int_{-\infty}^{\infty} \frac{2 x}{\left(x^{2}+1\right)^{2}} d x(5 \text { marks })
$$

e) Find the length of the curve $x=\left(\frac{y^{3 / 2}}{3}\right)-y^{1 / 2}$ from $y=1$ to $y=9$
f) Determine whether the following series converges or diverges

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n 2^{2}(n+1)!}{n^{2}!} \tag{5marks}
\end{equation*}
$$

QUESTION TWO (20 marks)

a) Evaluate the integral

$$
\int \frac{x}{1-x^{2}+\sqrt{1-x^{2}}} d x
$$

b) Evaluate
$\int \frac{x^{3}}{\sqrt{1-x^{8}}} d x$
c) By making the appropriate substitution for u in the integral below:
(i) Express the integral in terms of u.
(ii) Evaluate the integral as function of x.

$$
\int_{1}^{3} \frac{2 x-1}{(x+1)^{4}} d x
$$

d) Evaluate the integral

$$
\int_{0}^{\pi / 4} \frac{1}{\sin \theta+\cos \theta} d \theta
$$

QUESTION THREE (20 marks)

a) Determine the value of the integral
$\int_{2}^{3} \frac{1}{3-2 x-x^{2}} d x$
b) Evaluate the integral $\int \frac{x^{3}+4 x^{2}-x}{(x+2)(x+1)} d x$
c) Integrate by parts
$\int e^{a x} \sin b x d x$

QUESTION FOUR (20 marks)

a) Find the volume of the solid generated by revolving the region bounded by the curve $y=4-x^{2}$ and line $y=2-x$ about the x-axis. (7 marks)
b) Determine the area of the surface generated by revolving the curve $y=\sqrt{2 x-x^{2}}, 0.5 \leq x \leq 1.5$ about the x-axis. (6 marks)
c) Find the area of the region enclosed by the line $x+y^{2}=3$ and the curve $4 x+y^{2}=0 . \quad$ (7 marks)

QUESTION FIVE (20 marks)

a) Evaluate $\int_{0}^{1} e^{x^{2}} d x$ by Simpson's rule taking ten intervals.
b) Find a power series for the logarithmic function

$$
L(x)=\ln (1+x)^{3}
$$

marks)
c) Show that the Taylor series about $x=0$ for the function $f(x)=\cos x$ is $\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$
d) Evaluate the following integral

$$
\int \frac{x^{2} \tan ^{-1} x^{3}}{1+x^{6}} d x
$$

