JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY KISII LEARNING CENTRE

FIRST YEAR SEMESTER TWO EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

SMA 103- LINEAR ALGEBRA I
TIME- 2HOURS
INSTRUCTIONS: Answer question one (compulsory) and any other two questions

QUESTION ONE (30MARKS)

a) Consider the following systems of linear equations;

$$
\begin{gathered}
x+2 y=4 \\
2 x-y=3 \\
3 x+y=k
\end{gathered}
$$

Find the value of k for which the system is consistent
b) Use Gauss- Jordan Elimination method to solve the following systems of linear equations

$$
\begin{align*}
& x_{1}+x_{2}+2 x_{3}=8 \tag{6mks}\\
& x_{1}+2 x_{2}-3 x_{3}=-1 \\
& 3 x_{1}-7 x_{2}+4 x_{3}=10
\end{align*}
$$

c) Find the values of $\boldsymbol{\lambda}$ for which the determinant of the matrix below is equal to zero

$$
\left[\begin{array}{ccc}
\lambda+1 & 0 & 0 \\
4 & \lambda & 3 \\
2 & 8 & \lambda+5
\end{array}\right] \quad(5 \mathrm{mks})
$$

d) Let $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & -2 \\ 2 & -3 & 10 \\ 0 & 1 & -3\end{array}\right]$,find the adjoint of A and hence determine the value ofA ${ }^{-1}$.
e) i) State the Cramer's rule
ii)Use Cramer's rule to solve the following systems of linear equations;

$$
\begin{align*}
& -x_{1}+2 x_{2}-3 x_{3}=3 \\
& 2 x_{1}+x_{3}=0 \\
& 3 x_{1}-4 x_{2}+4 x_{3}=6 \tag{6mks}
\end{align*}
$$

QUESTION TWO (20 MARKS)

a) i) Define the term Basis of a vector space V
ii) Let $S=\left\{V_{I}=(1,2,1), V_{2}=(2,9,0)\right.$, and $\left.V_{3}=(3,3,4)\right\}$. Show that the set S is a basis for \mathbb{R}^{3} (5 mks)
b) Show that $\langle u, v\rangle=u_{1} v_{1}+2 u_{2} v_{2}$ where $u=\left(u_{1}, u_{2}\right), v=\left(v_{l}, v_{2}\right)$ is an inner product on \mathbb{R}^{2} (6 mks)
c) i) Define the term Linear transformation
ii) Show that $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $\mathrm{T}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}x_{1}+x_{2} \\ x_{2}-x_{1}\end{array}\right]$ is a linear transformation (6mks)

QUESTION THREE (20 MARKS)

a) i) Define the term a symmetric matrix
ii) Prove that a symmetric matrix of order 2 is diagonalizable
iii) State the Cayley - Hamilton's theorem and use it to verify for the matrix

$$
\mathrm{A}=\left[\begin{array}{cc}
1 & -3 \tag{4mks}\\
2 & 5
\end{array}\right]
$$

b)i) Show that the determinant of a second order matrix with identical rows is zero
(2mks)
ii) Consider the matrices $A=\left[\begin{array}{cc}2 & -1 \\ 4 & 3\end{array}\right], B=\left[\begin{array}{ll}1 & -4 \\ 4 & -1\end{array}\right]$ determine whether these matrices

Commute andhence find the commutator
d) Use Cramer's rule to find the point of intersection of the three planes defined by;

$$
\begin{align*}
& x+2 y-z=4 \\
& 2 x-2 y+3 z=3 \\
& 4 x+3 y-2 z=5 \tag{5mks}
\end{align*}
$$

QUESTION FOUR (20 MARKS)

a) Calculate the area of the triangle whose vertices are $\mathrm{A}(1,0), \mathrm{B}(2,2)$ and $\mathrm{C}(4,3)$ by use of the method of determinants
b) Consider the vectors $u=(1,-3,7)$ and $v=(8,-2,-2)$. Find $u . v$ and the angle between them
c) i) Let $V=\mathbb{R}^{3}$ with standard operations and $\mathrm{S}=\{(1,2,3),(0,1,2),(-2,0,1)\} \leq \mathbb{R}^{3}$. Does S Span V?
ii) Let $V=\mathbb{R}^{3}$ and $\mathrm{S}=\{(-4,-3,4),(1,-2,3),(6,0,0)\}$.Determine whether S is linearly independent.
d) Find the basis and dimension for the solution space of the homogeneous system

$$
\begin{aligned}
& 2 x_{1}+x_{2}+3 x_{3}=0 \\
& x_{1}+5 x_{3}=0 \\
& \quad x_{2+} x_{3}=0
\end{aligned}
$$

QUESTION FIVE (20 MARKS)

a) Apply the Gram-Schmidt process to construct an orthonormal basis set for $B=\{(1,1,0),(1,2,0),(0,1,2)\}$ of \mathbb{R}^{3}.
b) Show that the transformation $T(x)=2 x+1$ is not a linear transformation (3mks)
c) Find the eigen values of the matrix $A=\left[\begin{array}{ll}5 & 2 \\ 9 & 2\end{array}\right]$
d) Let $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$. Determine whether or not A is diagonalisable

