

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATION 2012/2013

1ST YEAR 1ST SEMESTER EXAMINATION FOR BACHELORS DEGREE (REGULAR)

COURSE CODE: SMA 3111

TITLE: MATHEMATICS I

DATE: 29 /4/2013 TIME: 9.00-11.00AM

DURATION: 2 HOURS

INSTRUCTIONS

- 1. This paper contains SIX (6) questions
- 2. Answer question 1 (Compulsory) and ANY other 2 Questions
- 3. Write all answers in the booklet provided

QUESTION ONE (30 marks)

a. The following information refers to the functions f and g:

$$f: x \to 3x - 2$$

$$g: x \to \frac{5}{x-2}, x \neq k$$

Find (i) the value of k, (1 marks)

(ii)
$$fg(x)$$

b. Exhibit the set that is described by the given statement below (where n is a positive integer):

$$\{x \mid x = n^2 + 10 < 40\}$$
. (4 marks)

Hence find its cardinality. (1 marks)

- c. If $\tan_{\pi} = \frac{3}{4}$ and $\sin_{\pi} < 0$, find the exact value of each of the remaining trigonometric functions of π . (7 marks)
- d. Solve the equation: $\log_5(x^2 + x + 4) = 2$. (5 marks)
- e. Find the ratio of the term in x^3 to the term in x^4 in the expansion of $(2x+3)^7$ (5 marks)
- f. How many four-digit numbers can be formed using the digits 0,1,2,3,4,5,6,7,8, and 9 if the first digit cannot be 0? (3 marks)

QUESTION TWO (20 marks)

a. Let
$$A = \{0, 2, 4, 6, 8, 10\}$$
, $B = \{0, 1, 2, 3, 4, 5, 6\}$, and $C = \{4, 5, 6, 7, 8, 9, 10\}$.

Find: (i)
$$A \cap B \cap C$$
; (2 marks)

(ii)
$$(A \cap B) \cup C$$
 (3 marks)

- b. Prove that $(A \cap B)^c = A^c \cup B^c$ (6 marks)
- c. Draw the Venn diagram for the combination of the sets A, B, and C:

$$(A \cap B^c) \cup (A \cap C^c)$$
 (9 marks)

QUESTION THREE (20 marks)

- a. Solve $\tan^2 m = \frac{3}{2} \sec m$ on the interval $0 \le m \le 2f$. (4 marks)
- b. Establish the identity

c. The figure below shows a roof truss PQR with rafter PQ = 3m, $\angle PQR = 40^{\circ}$, and $\angle PRQ = 32^{\circ}$ Calculate the length of (i) the roof rise PP', (ii) the rafter PR, and (iii) the roof span QR. Hence determine the cross-sectional area of the roof of truss. (12 marks)

QUESTION FOUR (20 marks)

a. The first, twelfth and last term of an arithmetic progression are 4, $31\frac{1}{2}$, and $376\frac{1}{2}$ respectively.

Determine:

- i. the number of terms in the series, (4 marks)
- ii. the sum of all term, and (4marks)
- iii. the 80^{,th} term. (4 marks)
- b. If Kshs.250,000 is invested at compound interest of 6% per annum, determine:
 - i. the value after 15 years, (4 marks)
 - ii. the time, correct to the nearest year, it takes to reach *Kshs*.750,000. (4 marks)

QUESTION FIVE (20 marks)

From the following observations prepare a frequency distribution starting with 5-10 (5 marks)

Hence:

- a. compute mean and standard deviation from the above data, (10 marks)
- b. draw the ogive curve from the above data. (5 marks)