IMPORTANT INFORMATION

A table of Bond Dissociation Energies for Some Common Bonds is attached at the end of this paper

Section A Question 1 COMPULSORY (30 marks)

- a. Define using structural example each of the following terms: (5 marks)
 - i. Radical anions
 - ii. Carbenes
 - iii. Carbocation
 - iv. Heterolysis
 - v. Homolysis
- b. What is the relationship between cis-1-chloro-2-fluorocyclohexane and trans-1-chloro-2-fluorocyclohexane? (2 marks)
- c. With a brief explanation arrange the following cations in the order of increasing stability: (5 marks)

$$(C_6H_5)_3C^{\dagger}$$
 $(CF_3)_3C^{\dagger}$ $(CH_3)_3C^{\dagger}$ $(CH_3)_2\overset{\dagger}{C}C_6H_5$ $(Cl_3C)_3C^{\dagger}$

d. In organic synthesis nitromethane is employed as a one carbon building block. Its acidity allows it to undergo deprotonation. Write the resonance structures of the resulting carbanion in the presence of a strong base. (3 marks)

$$CH_3N_O$$
 Base

e. 3,3-dimethylpentane is likely to form two radicals in the presence of a suitable reagent. Indicate which radical would be more stable. (3 marks)

f. Define the Huckel's Rule and its application in predicting whether a compound is aromatic or not. (5 marks)

g. Suggest a plausible mechanism for each of the following reactions: (5 marks)

i NHOH
$$H^+$$
 HO NH_2

h. Would you expect m-dinitrobenzene to undergo bromination with a halogen carrier rapidly or slowly? Explain briefly. (2 marks)

Section B: This section contains FOUR questions. Answer ONLY TWO questions.

QUESTION 2 (20 marks)

a. Complete the reaction and state the type of reaction outlined below then using the table provided give the end product and determine the H° for the following reaction:

(4 marks)

$$H_3C$$
- C - C 1 + H - O - H \longrightarrow ? CH_3

b. Draw the favoured conformation (gauche, anti or eclipsed) for the following molecules:

(6 marks)

- a. 1,2-dichloroethane
- b. 1,2-ethanediol
- c. Propanaldehyde
- c. Complete each of the following structures by placing the missing substituents in the correct position. (6 marks)

- i S-Alenine: CH₃CHNH₂COOH CH₃
- ii S-Glyceric aci: HOCH₂CHOHCOOH
- iii R-2-Chlorobutane
- d. Circle all the chiral carbon atoms in cholesterol (below) and state its possible number of optical isomer. (4 marks)

QUESTION 3 (20 marks)

a. Which of the following carbocation is the most stable and why? (4 marks)

b. Predict the product of monosubstitution in the following reactions: (6 marks)

3

i
$$NO_2^{\dagger}$$
, $B\overline{F}_4$

ii
$$\frac{OCH_3}{MO_2}$$

iii
$$Br_2$$

- c. Describe the necessary conditions and reagents required to convert benzene into the following: (8 marks)
 - a. Nitrobenzene
 - b. Ethylbenzene
 - c. Cyclohexane
 - d. t-Butylbenzene
- d. What is Relative Configuration as used in stereochemistry? (2 marks)

QUESTION 4 (20 marks)

- a. Many radical reactions occur via a multistep process known as a chain reaction. Name and describe the three basic steps in the radical chain reaction. (6 marks)
- b. With a brief explanation write the order of the C-H bond weakness of the following alkanes: (4 marks)
 - i. R₃CH ii. R2CH₂ iii. RCH₃ iv. HCH₃
- c. Account for the following: Species A is more stable than B. (2 marks)

$$CH_3CH_2$$
 $CHCH_2$ $CHCH_2$ $CHCH_2$ $CHCH_2$ $CHCH_2$

- d. Explain briefly "when we say a carbocation is stable"? (2 marks)
- e. Discuss the influence of orientation of each of the following groups on substitution in aromatic compounds by electrophilic reagents: -NH₂, -NO₂, -Cl. (6 marks)

QUESTION 5 (20 marks)

- a. Write a mechanism for the chlorination of benzene in the presence of AlCl₃ catalyst. (6 marks)
- b. Complete the following reactions: (3 marks)

$$i H_3C \longrightarrow I Cu$$

- c. Nitration of toluene is easier than that of benzene. Explain. (3 marks)
- d. Discuss briefly electrophilic substitution in the benzene ring? (4 marks)
- e. Cyclopentadiene anion (below) is aromatic. Explain briefly

(4 marks)

-END-

Bond	ΔH° kcal/mol	(kJ/mol)	Bond	ΔH° kcal/mol	(kJ/mol)
11 7 5 5 5 5 5			R-X bonds		
H-Z bonds	100	(ECO)		100	MEC
H-F H-Cl	136	(569)	CH ₃ -F	109	(456)
1103 0.70	103	(431)	CH ₃ -CI	84	(351)
H-Br	88	(368)	CH ₃ -Br	70	(293)
H-I	71	(297)	CH ₃ -I	56	(234)
H-OH	119	(498)	CH ₃ CH ₂ -F	107	(448)
			CH ₃ CH ₂ -Cl	81	(339)
Z-Z bonds			CH ₃ CH ₂ -Br	68	(285)
H-H	104	(435)	CH ₃ CH ₂ -I	53	(222)
F-F	38	(159)	(CH ₃) ₂ CH−F	106	(444)
CI-CI	58	(242)	(CH ₃) ₂ CH−CI	80	(335)
Br-Br	46	(192)	(CH ₃) ₂ CH-Br	68	(285)
1-1	36	(151)	(CH ₃) ₂ CH-I	53	(222)
HO-OH	51	(213)	(CH ₃) ₃ C−F	106	(444)
			(CH ₃) ₃ C-CI	79	(331)
R-H bonds			(CH ₃) ₃ C-Br	65	(272)
CH ₃ -H	104	(435)	(CH ₃) ₃ C-I	50	(209)
CH ₃ CH ₂ -H	98	(410)	55		
CH ₃ CH ₂ CH ₂ -H	98	(410)	R-OH bonds		
(CH ₃) ₂ CH-H	95	(397)	CH ₃ -OH	91	(381)
(CH ₃) ₃ C-H	91	(381)	CH ₃ CH ₂ -OH	91	(381)
CH ₂ =CH-H	104	(435)	CH ₃ CH ₂ CH ₂ -OH	91	(381)
HC≡C-H	125	(523)	(CH ₃) ₂ CH-OH	91	(381)
CH ₂ =CHCH ₂ -H	87	(364)	(CH ₃) ₃ C-OH	91	(381)
C ₆ H ₅ -H	110	(460)			
C ₆ H ₅ CH ₂ -H	85	(356)			
0.740.742 0.777					
R-R bonds					
CH ₃ -CH ₃	88	(368)			
CH ₃ -CH ₂ CH ₃	85	(356)			
CH ₃ -CH=CH ₂	92	(385)			
CH ₃ -C≡CH	117	(489)			