THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

MAIN EXAMINATION

AUGUST - DECEMBER 2015 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY

REGULAR PROGRAMME

CHEM 103: ACIDS AND BASES

Date:	DEC	Duration: 2 Hours			
INSTR	RUCTI	ONS:	Answer Question ONE and ANY OTHER TWO Questions		
Q1.	a)	i ii	ing Arhenius and Brosted lowry theory define the terms d. (3 marks)		
		iii	Base.	(3 marks)	
		li	Explain the relationship between Arrhenius, Bro Lewis theories of acids and base.	nsted Lowry and (6 marks)	
	b)	i	Define the term PH.	(1 mark)	
		ii	In a sample of lemon juice [H ⁺] is 3.8 x 10 ⁻⁴ M. V sample. Is the solution acidic or basic.	Vhat is the pH of the (3 marks)	
		iii	A solution formed by dissolving an antacid table Calculate [H ⁺]	t has a pH of 9.18. (3 marks)	
	c)	i	What is meant by conjugate acid.	(1 mark)	
		ii	Identify the conjugate acids and bases in the fol a) $H_2SO_4 + H_2O$ \longrightarrow $HSO_3^- + H_3O^+$	lowing in water (2 marks)	

			b) H ₂ CO ₃ + H ₂ O	(2 marks)		
	d)	i	Define the term solubility product (ksp) for	a sparingly soluble salt		
		ii	The solubility of calcium fluoride, CaF ₂ in wdm ⁻³ at 298K. Calculate the solubility produ			
		iii	State any TWO applications of solubility pr	oducts. (2 marks)		
Q2.	a)	Consider the ionization of a weak acid HA. HA \longleftrightarrow H ⁺ + A ⁻				
		Derive	e the relation PH = pka + log $\left[\frac{A-}{HA}\right]$	(6 marks)		
	b)	The p	H of a 0.10M solution of HA was found to be Dissociation constant (Ka) of HA.	e 2.8. Calculate (6 marks)		
		ii	Percent (%) ionization of HA.	(3 marks)		
	c)	How v	vould you prepare a buffer solution with HA.	(5 marks)		
Q3.	a)	Briefly	explain THREE factors that affects the stre	ngth of an acid. (6 marks)		
	b)	Calcu	late the pH of 0.01M Ba(OH)₂ a strong base	. (4 marks)		
	c)	What	are the characteristics of salts that produce	basic or acid solutions (5 marks)		
	d)	Briefly	, explain the ionization of water.	(3 marks)		
	e)		nple of fertilizer has a pH of 8.54. Calculate tentration of this fertilizer.	the hydrogen ion (2 marks)		
Q4.	a)	Define i	e the following terms Buffer solution.	(1 mark)		

Common ion effect.

ii

Q2.

(1 mark)

- b) i Calculate the pH of a buffer made from $0.24M \text{ NH}_3$ and $0.20M \text{ NH}_4\text{Cl kb} = 1.8 \times 10^{-5}$ (5 marks)
 - ii Suppose 0.001 mol NaOH is added to 1.0l of the solution in (i) above, what will be the pH of the resulting solution? **(5 marks)**
- c) A 0.056g quantity of acetic acid is dissolved in enough water to make 50ml of solution.
 - i Calculate the concentration of [H+] (CH $_3$ COO $^-$) and (CH $_3$ COOH) at equilibrium. Given ka = 1.8 x 10 $^{-5}$ (6 marks)
 - ii Calculate the pH of the solution. (2 marks)
- Q5. a) Sketch the titration for the following reactions
 - i Dilute HCl and dilute NaOH.
 ii Dilute CH₃COOH and dilute NaOH
 iii Dilute CH₃COOH and dilute NH₄OH
 (2 marks)
 iii (2 marks)
 - b) What are the pH and percent hydrolysis of a 0.10M NH₄Cl solution given $ka = 5.6 \text{ x}^{-10}$ (4 marks)
 - c) Solid NaF is added in tiny increments to a solution containing 0.1M CaCl₂ and 0.1M MgCl₂, CaF₂ and MgF₂ are rather insoluble with solubility product of [Ca²⁺] [F-]² = 3.9 X 10⁻¹¹ and (Mg²⁺) [F-]² = 6.6 X 10⁻⁹
 - i Which salt CaF₂ or MgF₂ precipitates first? (2 marks)
 - ii When the first trace of the second precipitate appears what are the concentrations of Ca²⁺ and Mg²⁺ (5 marks)
 - d) The solubility of CuBr₂ is 2.0 x 10⁻⁴ M at 25⁰C. Calculate the ksp value of CuBr₂ (3 marks)

END