CHUKA

UNIVERSITY

COLLEGE

UNIVERSITY EXAMINATIONS

THIRD YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION (ARTS),

MATH 344: ESTIMATION THEORY

STREAM: B.ED (ARTS) Y3S2

TIME: 2 HOURS

DAY/DATE: TUESDAY 19/4/2011 INSTRUCTIONS:

2.30P.M. - 4.30 P.M.

Attempt Question One and any other two.

QUESTION ONE (30 MARKS)

- (a) Given that $S^2 = \frac{\sum (yi \overline{y})^2}{n}$, show that the sample variance S^2 is unbiased estimator of the population variance δ^2 as $n \to \infty$. [5 marks]
- (b) Let x_1, x_2, x_3, x_4 be four independent sample observation of a Poisson distribution with parameter λ . Show that $T = \frac{x_1 + 4x_2 + 5x_32x_4}{12}$ is an unbiased estimator of λ . [4 marks]
- (c) Given that the p.d.f of a random variable X is defined by

$$f(x,\theta) = \begin{cases} \frac{1}{\theta} & , 0 \le x \le \theta \\ 0 & , otherwise \end{cases}$$

Find the constant C such that $C\bar{x}$ is unbiased estimator of C θ . [4 marks]

- (d) Find the sufficient statistic for δ^2 given that the random variable X is normally distributed with X~N(μ , ∂^2) and μ is known. [5 marks] (Hint: Use the Pitman Koopman from of distribution).
- (e) (i) State two conditions that must be satisfied for an estimator T to be considered consistent. [2 marks]
 - (ii) Given that X is a random variable from a Bernoulli distribution, show that $\frac{x}{n}$ is a consistent estimator of P. [3 marks]
- (f) Given that $Y \sim N(\mu, \partial^2)$ with ∂ being known. Find I (μ). [4 marks]
- (g) Let Y_1 , Y_2 , Y_3 be independent sample values from a Poisson population with parameter θ . If $T1 = \frac{2Y_1 + 3Y_2 + 4Y_3}{9}$ and $T_2 = \frac{Y_1 + Y_2 + Y_3}{3}$ show that T_1 and T_2 are unbiased estimator of θ and also find the efficiency of T_1 in relation to T_2 . [3 marks]

QUESTION TWO (20 MARKS)

- (a) Let $X \sim N(\mu, \partial^2)$ with μ being known, show that S^2 is the minimum variance bound unbiased estimator of ∂^2 . [10 marks]
- (b) (i) State five properties of maximum likelihood estimation. [5 marks]
 - (ii) Given the p.d.f

$$f(x,\mu,\partial) = \frac{1}{\partial\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\frac{(x-\mu)^2}{\partial^2}\right\}_{\substack{-\infty < x, < \infty \\ \partial > 0}}$$

Find the M.L.E of ∂^2 .

QUESTION THREE (20 MARKS)

(a) Describe briefly the method of moments for estimation of parameter θ in the p.d.f

$$f(x, \theta) = \theta x^{\theta - 1}, 0 \le x \le 1, 0 > 0$$

using the method of moments. [5 marks]

2

[5 marks]

(b) Consider a random variable X with a Cauchy distribution defined by the p.d.f

$$f(x,\theta) = \frac{1}{x} \cdot \frac{1}{1 + (x - \theta)^2} \quad -\infty < x < \infty$$

Find the information function $I(\theta)$. [10 marks]

QUESTION FOUR (30 MARKS)

(a) Let X_2 , X_2 be a random sample of size Z from the distribution

$$f(x,\theta) = \frac{1}{\theta} e^{-\frac{x}{\theta}}, \quad 0 \le x < \infty, \theta > 0$$

Show that $T = \frac{4}{\pi} \sqrt{x_1 x_2}$ is unbiased estimator of θ . [5 marks]

(b) Let \overline{X} and \overline{Y} denote the means of two independent random sample each of size n from a normal population with parameters (μ, ∂^2) and (μ_2, ∂^2) . Find the size of the sample such that

$$P\left[(\overline{X} - \overline{Y})\right]\partial_{5} < \mu_{1} - \mu_{2} < (\overline{X} - \overline{Y}) + \partial_{5} = 0.9$$
 [5 marks]

(c) Let X be a Poisson variate with parameter θ . Verify whether $T = \sum xi$ is a sufficient statistic of θ by finding the conditional distribution of $f(x_1, x_2 \cdots x_n | T = t) = \frac{P(x_1, x_2, \cdots, x_n)}{P(T = t)}$ [10 marks]
