JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION 2013/2014

3RD YEAR 1ST SEMESTER EXAMINATION FOR THE
 DEGREE OF BACHELOR OF EDUCATION (SCIENCE) WITH

 IT(SCHOOL BASED-MAIN)

COURSE CODE: SMA 301
TITLE: ORDINARY DIFFERENTIAL EQUATIONS
DATE: $2 / 5 / 2013 \quad$ TIME: $9.00-11.00 \mathrm{AM}$
DURATION: 2 HOURS

INSTRUCTIONS

1. This paper contains FIVE (5) questions
2. Answer question 1 (Compulsory) and ANY other 2 Questions
3. Write all answers in the booklet provided

QUESTION ONE (COMPULSORY)

a) Given $y=A \sin x-B \cos x$, where A and B and arbitrary constants, eliminate the arbitrary constants to form a differential equation hence state its order and degree
(5 marks)
b) The rate of cooling of a body is proportional to the excess of its temperature above its surrounding $\theta^{\circ} \mathrm{C}$. A body cools from $85^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ in 4.0 minutes at a surrounding temperature of $15^{\circ} \mathrm{C}$. Determine how long to the nearest second the body will take to cool to $55^{\circ} \mathrm{C}$.
c) Solve the differential equation below using an appropriate method

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+9 y=0 \tag{5marks}
\end{equation*}
$$

d) Using an appropriate method solve the differential equation $2 y y^{\prime \prime}=1+\left(y^{\prime}\right)^{2}$.
(5 marks)
e) Use the method of variation of parameters to solve $2 \frac{d^{2} y}{d x^{2}}-7 \frac{d y}{d x}-4 y=e^{3 x}$. (5 marks)
f) Solve the differential equation $(y-x-4) d y+(2-y-x) d x=0$ (6 marks)

QUESTION TWO (20 marks)

a) By finding the integrating factor, find the general solution of the differential equation $\frac{\left(1-x^{2}\right)}{x} \frac{d y}{d x}+\frac{2 x^{2}-1}{x^{2}} y=x$ (Hint: Use partial fractions) (10 marks)
b) A resistance (R) of 100 ohms, an inductance (L) of 0.5 henry are connected in series with a battery of 20 volts(V). Find the current (i) in the circuit as a function of time (t) given that they are connected by the differential equation $R i+L \frac{d i}{d t}=V$.
c) Use variation of parameters to solve the differential equation

$$
\begin{equation*}
4 \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+e^{x}=0 \tag{5marks}
\end{equation*}
$$

QUESTION THREE (20 marks)

a) Consider a second order differential equation

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=F(x)
$$

Let $\mathrm{F}(\mathrm{x})=0$ and let $\mathrm{y}=\mathrm{U}$ and $\mathrm{y}=\mathrm{V}$, where U and V are functions of x be two solutions to the differential equation, then show that $y=(U+V)$ is also a solution.
(6 marks)
b) Find the general solution of the differential equations

> (i) $(\sqrt{x y}-x) d y+y d x=0$
> (ii) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+5 y=0$
> (iii) $\frac{d^{2} y}{d x^{2}}-36 y=2 \cos 4 x$

QUESTION FOUR (20 marks)

Use any appropriate method to solve each of the differential equations below
a) $\left[(\cos x) \operatorname{In}(2 y-8)+\frac{1}{x}\right] d x=\frac{\sin x}{4-y} d y$ given that $y=4.5$ when $x=1$. (6 marks)
b) $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$
c) $\frac{d x}{d y}+\frac{y}{1-y^{2}} x=y \sqrt{x}$

QUESTION FIVE (20 marks)

a) Detectives discovered a murder victim at 6.30 am and the body temperature of the victim was then $26^{\circ} \mathrm{C}$. After 30 minutes the police surgeon arrived and found the body temperature to be $23^{\circ} \mathrm{C}$. If the air temperature was 16 ${ }^{0} \mathrm{C}$ throughout and the normal body temperature is $37^{\circ} \mathrm{C}$. At what time did the police surgeon estimate that the crime occurred.
(10 marks)
b) Solve the differential equation $x y^{\prime \prime}=y^{\prime}+\left(y^{\prime}\right)^{3}$ given $x=1$ when $y=1$

$$
\begin{equation*}
\text { and } x=2 \quad \text { when } \frac{d y}{d x}=1 \tag{10marks}
\end{equation*}
$$

