COURSE TITLE: ODE I
COURSE CODE: SMA 301; TIME: 2 HOURS
KOSELE LC; AUGUST 2013
Answer question ONE and any other TWO questions.

QUESTION 1

(a) Classify the following differential equations.
(i) $y^{\prime}=y$
(ii) $y^{\prime \prime}=4 y$
(iii) $\left(y^{\prime}\right)-3 y=e^{x}$
(b) Verify that $y=c x^{2}$ is the solution of $x y^{\prime}-3 y=0$ hence find the particular solution given that $y(3)=2$
(c) Show that $f(x, y)=x^{2} y-4 x^{3}+3 x y^{2}$ is homogenous function of degree three
(d) Solve the differential equation $y^{\prime \prime}-4 y=0$
(e) Test for exactness in $\left(2 x y-3 x^{2}\right) d x+\left(x^{2}-2 y\right) d y=0$.
(f) Find the general solution of $\frac{d y}{d x}+5=6 x, y(1)=2$

QUESTION 2

(a) Show that $\left(y^{2}+y \cos x\right) d x+(3 x y+2 \sin x) d y=0$ is not exact then find an integrating factor and solve it.
[10mks]
(b) Find the equation of a curve that passes through the point $(1,3)$ and has a slope of $\frac{y}{x^{2}}$ at the point (x, y)
(c) Show that $y_{1}(x)=x^{1 / 2}$ and $y_{2}=x^{-1}$ form a fundamental set of the solution of $2 x^{2} y^{\prime \prime}+3 x y^{\prime}-y=0, x>0$

QUESTION 3

(a) Find the general solution of the equation
$y^{\prime \prime}-2 y^{\prime}-8 y=x e^{x}+4$
(b) Show that the following differential equation is homogenous and solve it.
$(2 x+y) d x+(x-2 y) d y=0$
[10mks]

QUESTION 4

(a) Check for exactness and solve the equation.
$\left(5 x^{2}+3 x^{2} y^{3}-2 x y^{3}\right) d x+\left(2 x^{3} y-3 x^{2} y^{2}-5 y^{4}\right) d y=0$
[15mks]
(b) Newton's law of cooling states that if an object is hotter than the ambient temperature, then the rate of cooling of the object is proportional to the temperature difference

$$
\frac{d \Theta}{d t}=-k(\Theta-A)
$$

with $\Theta\left(t_{0}\right)=\Theta_{0}$, where $\Theta(t)$ is the object's temperature, A is the ambient temperature (a constant)and k is a positive constant. Show that by using the initial condition and rearranging, this is a first-order linear ODE results in,

$$
\Theta(t)=A+\left(\Theta_{0}-A\right) e^{-k\left(t-t_{0}\right)}
$$

[5mks]

QUESTION 5

(a) Use the method of variation of parameters to solve
$y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{2 x}$ for $x>0$
[10mks]
(b) Given the logistic equation:

$$
\frac{d p}{d t}=\mu p\left(1-\frac{p}{p_{\infty}}\right)
$$

with $p\left(t_{0}\right)=p_{0}$ solve the separable ODE and show that,

$$
p(t)=\frac{p_{\infty}}{1+\left(\frac{p_{\infty}}{p_{0}}-1\right) e^{-\mu\left(t-t_{0}\right)}}
$$

