JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

DRAFT-UNIVERSITY EXAMINATIONS 2012/2013 ACADEMIC YEAR

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCES

SEMESTER ONE, SECOND YEAR EXAMINATIONS for BSc/BEd

SMA201: LINEAR ALGEBRA II

Aug,2013 Time: 2hrs

INSTRUCTIONS

Answer Question1 and two other questions

Show all the necessary working

Question1 [30marks] Compulsory

(a) Define a linear mapping *T* from an m-dimensional vector space *X* into n-dimensional vector space *Y* over the real field *F*. Let $B = \{u_1, u_2, u_3, \dots, u_m\}, \Psi = \{v_1, v_2, v_3, \dots, v_n\}$ be the bases for the respective vector spaces *X* and *Y*. Construct matrix M of *T* with respect to the ordered bases *B*, Ψ . [4marks]

(b) If
$$A = \begin{bmatrix} 1 - 4i & i & 2 \\ 3 & 2 + i & 0 \end{bmatrix}$$

Find the matrix A^* the *adjoint* of **A**.

(c) Let $P_{n \times n}$ be a real square matrix.

(i)Define what is meant by $P_{n \times n}$ is orthogonal.

(ii) Let
$$P = \begin{pmatrix} 1 & -2 & 2 \\ 2 & 2 & 1 \\ -2 & 1 & 2 \end{pmatrix}$$
 be a real square matrix.

Compute PP^{t} , $P^{t}P$, P^{-1} and orthonormalize P.

(d) If *V* is a complex space with a norm that satisfies $\langle x, y \rangle_r = \frac{\|x + y\|^2 - \|x - y\|^2}{4}$

prove that
$$\langle x, y \rangle_r = \frac{\|x+y\|^2 - \|x-y\|^2}{4}$$
 is an inner product on V. [7marks]

(e) Determine the Fourier expansion of $x = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$ with respect to the vectors [6marks]

Question2 [20marks]

[8marks]

[5marks]

Given the vectors $x_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \\ -1 \end{pmatrix}, x_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \\ -1 \end{pmatrix}$ of vector space R^4 with the standard inner

product.

(i) Show that
$$x_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \\ -1 \end{pmatrix}, x_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \\ -1 \end{pmatrix}$$
 are linearly independent.
(ii) Show that the vectors $x_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \\ -1 \end{pmatrix}, x_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \\ -1 \end{pmatrix}$ are mutually non orthogonal

(iii) Apply the Gram-Schmidt process to the vectors
$$x_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \\ -1 \end{pmatrix}, x_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \\ -1 \end{pmatrix}$$

to obtain the corresponding orthogonal set of vectors a_1 , a_2 , a_3 given.

(iii)Verify that the set $\{a_1, a_2, a_3\}$ linearly independent. [20marks]

Question3 [20marks]

п

Let W be the space of all 3×3 matrices A over R which are skew-symmetric *i.e.*, $A^{t} = -A$. We equip W with the inner product $[A * B] = tr [AB^t]$. Let V be the vector space R^3 with the standard inner product. If T be the mapping from V into W defined by

$$T(x, y, z) = \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix} i.e. T : V \to W$$

(a)Show that $T(0_V) = 0_W$ [5marks]

(b)Show that *T* is linear

(c) Prove that T is a vector space isomorphism.

Question4 [20marks]

Let $A =$	1	1	0	0
	1	1	0	0
	0	0	1	1
	0	0	1	1
. Find				

(i)The characteristic polynomial of A. (ii) The eigenvalues of A. (iii)The corresponding eigenvectors.

Question5 [20marks]

Given P_1, P_2, P_3 are rotator matrix maps that corresponds to

$$P_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}, P_{2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 \\ 0 & \sqrt{2} & 0 \\ -1 & 0 & 1 \end{bmatrix}, P_{3} = \begin{bmatrix} 1/2 & -\sqrt{3}/2 & 0 \\ \sqrt{3}/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Prove that

(i) rotator matrix maps P_i are orthogonal for i=1,2,3.

(ii) rotator matrix map products $P_{i*}P_{j}$ are orthogonal for i, j=1,2,3. (iii) If $P = P_{i} * P_{j}$ determine the inverse matrix P^{-1}

[20marks]

[8marks]

[6marks]

[6marks]

[8marks]

[7marks]