JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

DRAFT-UNIVERSITY EXAMINATIONS
 2012/2013 ACADEMIC YEAR

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCES

SEMESTER ONE, SECOND YEAR EXAMINATIONS for BSc/BEd

SMA201: LINEAR ALGEBRA II
Aug,2013 Time: 2hrs

INSTRUCTIONS

Answer Question1 and two other questions

Show all the necessary working

Question1 [30marks] Compulsory

(a) Define a linear mapping T from an m-dimensional vector space X into n-dimensional vector space Y over the real field F. Let $B=\left\{u_{1}, u_{2}, u_{3}, \ldots \ldots \ldots, u_{m}\right\}, \Psi=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{n}\right\}$ be the bases for the respective vector spaces X and Y.Construct matrix M of T with respect to the ordered bases B, Ψ.
[4marks]
(b) If $A=\left[\begin{array}{lll}1-4 \mathrm{i} & \mathrm{i} & 2 \\ 3 & 2+\mathrm{i} & 0\end{array}\right]$

Find the matrix A^{*} the adjoint of \mathbf{A}.
(c) Let $P_{n \times n}$ be a real square matrix.
(i)Define what is meant by $P_{n \times n}$ is orthogonal.
(ii) Let $P=\left(\begin{array}{ccc}1 & -2 & 2 \\ 2 & 2 & 1 \\ -2 & 1 & 2\end{array}\right)$ be a real square matrix.

Compute $P P^{t}, P^{t} P, P^{-1}$ and orthonormalize P.
[8marks]
(d) If V is a complex space with a norm that satisfies $\langle x, y\rangle_{r}=\frac{\|x+y\|^{2}-\|x-y\|^{2}}{4}$
prove that $\langle x, y\rangle_{r}=\frac{\|x+y\|^{2}-\|x-y\|^{2}}{4}$ is an inner product on V.
[7marks]
(e) Determine the Fourier expansion of $x=\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right)$ with respect to the vectors
[6marks]

Question2 [20marks]

Given the vectors $x_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ -1\end{array}\right), x_{2}=\left(\begin{array}{l}1 \\ 2 \\ 0 \\ -1\end{array}\right), x_{3}=\left(\begin{array}{l}3 \\ 1 \\ 1 \\ -1\end{array}\right)$ of vector space R^{4} with the standard inner product.
(i) Show that $x_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ -1\end{array}\right), x_{2}=\left(\begin{array}{l}1 \\ 2 \\ 0 \\ -1\end{array}\right), x_{3}=\left(\begin{array}{l}3 \\ 1 \\ 1 \\ -1\end{array}\right)$ are linearly independent.
(ii) Show that the vectors $x_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ -1\end{array}\right), x_{2}=\left(\begin{array}{l}1 \\ 2 \\ 0 \\ -1\end{array}\right), x_{3}=\left(\begin{array}{l}3 \\ 1 \\ 1 \\ -1\end{array}\right)$ are mutually non orthogonal.
(iii) Apply the Gram-Schmidt process to the vectors $x_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ -1\end{array}\right), x_{2}=\left(\begin{array}{l}1 \\ 2 \\ 0 \\ -1\end{array}\right), x_{3}=\left(\begin{array}{l}3 \\ 1 \\ 1 \\ -1\end{array}\right)$ to obtain the corresponding orthogonal set of vectors a_{1}, a_{2}, a_{3} given .
(iii)Verify that the set $\left\{a_{1}, a_{2}, a_{3}\right\}$ linearly independent.
[20marks]

Question3 [20marks]

Let W be the space of all 3×3 matrices A over R which are skew- symmetric i.e., $A^{t}=-A$. We equip W with the inner product $[A * B]=\operatorname{tr}\left[A B^{t}\right]$. Let V be the vector space R^{3} with the standard inner product. If T be the mapping from V into W defined by $T(x, y, z)=\left[\begin{array}{lcr}0 & -z & y \\ z & 0 & -x \\ -y & x & 0\end{array}\right]$ i.e. $T: V \rightarrow W$
(a)Show that $T\left(0_{V}\right)=0_{W}$
(c) Prove that T is a vector space isomorphism.

Question4 [20marks]

Let $A=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$
. Find
(i) The characteristic polynomial of A.
(ii) The eigenvalues of A .
(iii) The corresponding eigenvectors.

Question5 [20marks]
Given $\mathrm{P}_{1,} \mathrm{P}_{2}, \mathrm{P}_{3}$ are rotator matrix maps that corresponds to

$$
P_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right], P_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & \sqrt{2} & 0 \\
-1 & 0 & 1
\end{array}\right], P_{3}=\left[\begin{array}{lcl}
1 / 2 & -\sqrt{3} / 2 & 0 \\
\sqrt{3} / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Prove that
(i) rotator matrix maps P_{i} are orthogonal for $\mathrm{i}=1,2,3$.
(ii) rotator matrix map products $\mathrm{P}_{\mathrm{i} *} \mathrm{P}_{\mathrm{j}}$ are orthogonal for $\mathrm{i}, \mathrm{j}=1,2,3$.
(iii) If $\mathrm{P}=\mathrm{P}_{\mathrm{i}} * \mathrm{P}_{\mathrm{j}}$ determine the inverse matrix P^{-1}

