SMA 300 REAL ANALYSIS I
Answer Question ONE and any other TWO questions

SECTION A(30 MARKS) Answer both questions

QUESTION ONE (30MARKS)

(a) Define the following terms.
(i) A continuous function at a point x_{o}.
(ii) Refinement of a partition P
(4MARKS)
(b)(i)Determine whether or not $x_{n}=n^{2}$ is a fundamental sequence.
(3MARKS)
(ii) Determine the convergence of the infinite series;

$$
\sum \frac{1}{n^{2}+a^{2}}
$$

(4MARKS)
(c) Prove that the sequence $\left(\frac{2 n-7}{3 n+2}\right)$ is;
(i) Monotonically increasing.
(3MARKS)
(ii) Bounded
(3MARKS)
(d)(i) Prove that a finite intersection of open sets in a metric space is open.
(4MARKS)
(ii) Show that the function $f(x)=2 x+1$ is Riemann integrable in the interval $[1,3]$ and that $\int_{1}^{3} f(x) d x=10$.
(iii) Use an example to demonstrate that not all bounded sequences are convergent.
(4MARKS)

QUESTION TWO(20MARKS)

(a)Prove that a countable union of countable set is countable.
(5MARKS)
(b)(i) Prove that if a sequence x_{n} converges to a then every subsequence of x_{n} also converges to a.
(3MARKS)
(ii) State any two properties of limits.
(2MARKS)
(iii) Test for the convergence of the following series $1+\frac{x^{2}}{2}+\frac{x^{4}}{4}+\frac{x^{6}}{6}+\ldots$
(6MARKS)
(c) Prove that every Cauchy sequence is bounded.
(4MARKS)

QUESTION THREE(20MARKS)

(a)(i) State Cauchy's integral test for convergence
(2MARKS)
(ii) By using Cauchy's integral test, show that $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $p \leq 1$
(6MARKS)
(b)(i) Prove that the set \mathbb{R} with the mapping $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ defined as $d(x, y)=|x-y|$ is a metric space
(5MARKS)
(ii) Prove that every monotonically increasing sequence which is bounded converges.
(7MARKS)

QUESTION FOUR(20MARKS)

(a)(i)State without proof the De-Alemberts ratio test for convergence of the series $\sum x_{k}$.
(3MARKS)
(ii)Show that the function $f(x)=x^{2}$ is Riemann integrable in the interval $[0, k]$, hence find the integral $(k$ is a constant $)$
(10MARKS)
(b)Prove that the set of real numbers is uncountable.
(7MARKS)

QUESTION FIVE(20MARKS)

(a) Show that a function $f(x)=\frac{1}{x}$ is continuous but not uniformly continuous for all $x \in(0,1)$
(7MARKS)
(b) Show that $\sum(-1)^{n} \frac{n+2}{2^{n}+5} \cos n x$ is convergent for all real values of x.
(6MARKS)
(c)(i) Define an interior point of a set.
(2MARKS)
(ii) Prove that the interior of a set is an open set.
(5MARKS)

