JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE \& TECHNOLOGY UNIVERSITY EXAMINATIONS 2012/2013 $2^{\text {ND }}$ YEAR $1^{\text {ST }}$ SEMESTER EXAMINATION OF BACHELOR OF EDUCATION (SCIENCE)

 REGULAR

 REGULAR}

COURSE CODE: SMA 301
COURSE TITLE: ORDINARY DIFFERENTIAL EQUATIONS I
DATE: 21/8/13
TIME: 2.00-4.00 PM
DURATION: 2 HOURS

INSTRUCTIONS

1. This paper contains five (5) questions.
2. Answer question 1 (compulsory) and ANY other TWO questions.
3. Write all answer in the booklet provided.

SMA 301 : ORDINARY DIFFERENTIAL EQUATION I

Attempt question 1 and any other two questions

QUESTION 1 COMPULSORY(30 marks)

a) Consider $y=A \sin x-B \cos x$, where A and B are arbitrary constants. By eliminating the arbitrary constants through differentiation form a differential equation. State its degree and order.
(3 marks)
b) The rate of decay of a radioactive material is given by $\frac{d N}{d t}=-\lambda N$ where λ, is a decay constant and λN the number of radioactive atoms disintegrating per second. Determine the half life in years of a nickel isotope assuming the decay constant is 1.832×10^{-10} atoms per second and a 365 day year. (Half life means the time taken for N to become one half of the original) (4 marks)
c) Reduce the differential equation $(y-x-2) d y=(y+x-6) d x$ to homogeneous form hence solve.
d) Solve the differential equation $x y^{\prime \prime}=y^{\prime}+\left(y^{\prime}\right)^{3}$
(6 marks)
e) Find the particular solution to the differential equation $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+5 y=2 e^{-2 x}$ given that $\mathrm{x}=0, \mathrm{y}=1$ and $\frac{d y}{d x}=-2$
f) Use variation of parameters to solve $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=e^{-x}$

QUESTION 2(20 MARKS)

Use any appropriate method to solve the differential equations below
a) $\left(1-x^{2}\right) \frac{d y}{d x}+x y=x\left(1-x^{2}\right) \sqrt{y}$
b) $(\sqrt{x y}-x) d y+y d x=0$
c) $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=x^{2}$

QUESTION 3(20 MARKS)

Find the general solution of each of the following differential equation
a) $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$
(6 marks)
b) $\left(1+x^{2}\right) d y=\left(\tan ^{-1} x-y\right) d x$
(8 marks)
c) $\left(x \tan \frac{y}{x}-y \sec ^{2} \frac{y}{x}\right) d x+x \sec ^{2} \frac{y}{x} d y=0$
(6 marks)

QUESTION 4(20 MARKS)

a) Find the general solution of
(i) $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-3 y=0$
(4 marks)
(ii) $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=0$
(4 marks)
(iii) $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+10 y=0$
(4 marks)
b) Use the method of variation of parameters to find the solution of

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-3 y=10 \tag{8marks}
\end{equation*}
$$

QUESTION 5(20 MARKS)

a) Solve the differential equation $2 y y^{\prime \prime}=\left(y^{\prime}\right)^{2}+1$

In an L-C-R circuit, the charge q on a plate of condenser is given by $L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{c}=E \sin \omega t$ where $i=\frac{d q}{d t}$. The circuit is tuned to resonance so that $\omega^{2}=\frac{1}{L C}$. If $R^{2}<\frac{4 L}{C}$ and $q=0=i$ when $t=0$.
Show that $q=\frac{E}{R \omega}\left\{-\cos \omega t+e^{\frac{-R t}{2 L}}\left(\cos p t+\frac{R}{2 L P} \sin p t\right)\right\}$
and $i=\frac{E}{R}\left(\sin \omega t-\frac{1}{P \sqrt{L C}} e^{-\frac{R t}{2 L}} \sin P t\right)$
where $P^{2}=\frac{1}{L C}-\frac{R^{2}}{4 L^{2}}$

