JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY
THIRD YEAR FIRST SEMESTER EXAMINATIONS (SCHOOL BASED) SMA 303: COMPLEX ANALYSIS
INSTRUCTION: Answer Question ONE and ANY other TWO questions. QUESTION ONE (COMPULSORY) - 30 MARKS
a) Define each of the following terms as used in complex analysis
i) Disk
ii) Deleted neighbourhood
iii) Principal argument
iv) Limits of a complex functio
(8 marks)
b) Express $2-2 \sqrt{3} i$ in polar form using the principal argument.
c) Evaluate the integral $\oint_{c} \frac{z}{z^{2}+9} d z$, where C is the circle $|z-2 i|=4$ using the Cauchy's integral formular.
d) Compute the $\mathrm{n}^{\text {th }}$ root for the $(2 \sqrt{3}+i)^{\frac{1}{2}}$, hence sketch an appropriate circle indicating the roots w_{0}, w_{1}, and w_{2}.
e) Sketch the set S denoted by the inequality $2 \leq|z-3+i|<3$.
f) Find the image of a line $x=2$ under the complex mapping $w=z^{2}$ for $w, z \in \mathrm{X}$, hence sketch the line and its image under the mapping (4 marks)
g) Evaluate the line integral $I=\oint_{c}\left(x^{2} d x-2 x y d y\right)$ where C comprises the triangle $O(0,0), A(2,1)$ and $C(1,3)$
(4 marks)

QUESTION TWO (20 MARKS)

a) Prove that if a complex function $f(z)=u(x, y)+i v(x, y)$ is analytic at any point z, and in the domain D, then the Laplace's equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$, can be verified.
(7 marks)
b) Find the derivative of $\frac{z^{2}-2 i z}{2 z+4-i}$
c) Solve for w, given the complex function $e^{w}=\sqrt{3}+i$ for $w, \in \mathrm{X}$. (6 marks)
d) Compute the principal value of the complex logarithm $\ln z$ for $z=1-i$

QUESTION THREE (20 MARKS)

a) State De-Moivre's theorem hence use it to evaluate $(1-i)^{6}$, giving your answer in the form $a+b i, a, b \in \mathrm{P}$
b) Find an upper bound for the reciprocal of $z^{4}-5 z+1$, given that $|z|=2$.
c) Use the definition of the derivative of a complex function to determine the derivative of $f(z)=\frac{1}{Z}$ in the region where the derivative exists.
(5 marks)
d) Evaluate $\left(\frac{2+i}{\sqrt{3}+i}\right)^{\frac{1}{4}}$, giving all your answers in polar form. (6 marks)

QUESTION FOUR (20 MARKS)

a) Find the value of i^{i}
b) Given that $e^{i \theta}=\cos \theta+i \sin \theta$ for any real number θ, prove that $e^{i z}=\cos z+i \sin z$ for any complex number z.
c) Evaluate $\oint \frac{1}{z} d z$, where Cis the circle $x=\cos t, x=\sin t$ for $0 \leq t \leq 2 \pi$ (4 marks)
d) State the Cauchy's integral formular for derivatives hence evaluate

$$
\begin{equation*}
\oint \frac{z^{2}+3}{z(z-i)^{2}} \tag{6marks}
\end{equation*}
$$

QUESTION FIVE (20 MARKS)

a) Find the real numbers p and q for which the complex numbers $z=a+b i$ and $w=a+\frac{1}{b} i$ are equal given that $w, z \in \mathrm{X}$.
b) Show that the function $f(z)=3 x^{2} y^{2}-6 i x^{2} y^{2}$ is not analytic at any point but differentiable along the coordinate axes.
c) Use L'Hopital's rule to compute

$$
\begin{equation*}
\lim _{z \rightarrow 1+i} \frac{z^{5}+4 z}{z^{2}-2 z+2} \tag{5marks}
\end{equation*}
$$

d) Given the complex function $f(z)=u(x, y)+i v(x, y)$, verify that the function $u(x, y)=2 x-2 x y$, hence find $v(x, y)$ the harmonic conjugate u, Hence find the corresponding analytic function $f(z)=u+i v$.

