JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

3rd YEAR 2nd SEMESTER EXAMINATION [SCHOOL BASED] SMA 304: GROUP THEORY I

INSTRUCTION: Attempt question one (**COMPULSORY**) and any other TWO questions only.

QUESTION ONE(COMPULSORY) [30 MARKS]

(a). Show that any group G of prime order p is cyclic and has no nontrivial subgroup. (5 marks)(b). Differentiate between a monoid and a semigroup. (4 marks)(c). Show that if b is an element of a group G of order k, then $b^k = e$, where e is the identity element in G. (4 marks)(d). Show that the intersection of any nonempty collection of subgroups of a group G is also a subgroup of G. (4 marks)(e). State and prove the subgroup criterion. (5 marks)(f). Define a normalizer of a group G and show that it is a subgroup of G. (4 marks)(g). Define a binary operation and Quotient group. (4 marks)

QUESTION TWO [20 MARKS]

(a). State and prove the first isomorphism theorem for groups. (15 marks) (b). Prove that if H and K are subgroups of G with N normal in G, then $H/(H \cap K)$ is isomorphic to HK/K. (5 marks)

QUESTION THREE [20 MARKS]

(a). Define a normal group.	(2 marks)
(b). Prove that every subgroup of a commutative group is a norm	nal
group.	(5 marks)
(c). Prove that the centre of a group G is a normal subgroup of G .	(5 marks)
(d). State and prove the Quotient group theorem.	(8 marks)

QUESTION FOUR [20 MARKS]

(a). Distinguish between even permutation and odd permutation. (4 marks) (b). Prove that the number of elements in the symmetric group S_k is k!. (10 marks) (c). Describe permutation of a set, symmetric group and cyclic group. (6 marks)

QUESTION FIVE [20 MARKS]

(a). Explain the meaning of an index of a group and order of a	
group.	(4 marks)
(b). State and prove the following theorems for groups:	
(i). Lagrange's Theorem.	(9 marks)

(ii). Fermat's Theorem. (7 marks)