JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE \& TECHNOLOGY UNIVERSITY EXAMINATIONS 2012/2013

$1^{\text {ST }}$ YEAR $1^{\text {ST }}$ SEMESTER EXAMINATION OF BACHELOR OF EDUCATION (SCIENCE)

MAIN SCHOOL BASED

COURSE CODE: SMA 103
COURSE TITLE: LINEAR ALGEBRA I
DATE: / /2013
TIME: . 00 - . 00
DURATION: 2 HOURS

INSTRUCTIONS

1. This paper contains five (5) questions.
2. Answer question 1 (compulsory) and ANY other TWO questions.
3. Write all answer in the booklet provided.

Show all the necessary working

Question1 [30marks] Compulsory

(a) Define the vector subspaces H_{1}, H_{2} of vector space R^{3} by, $H_{1}=\{(x, y, z): x+2 y+2 z=0\}$, $H_{2}=\{(x, y, z): 2 x+2 y-8 z=0\}$.
(i) Verify that both H_{1}, H_{2} do contain the zero vector.
(ii) Find bases for H_{1}, H_{2}.
(b) Suppose the mapping $L: R^{3} \rightarrow R^{3}$ with $L\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}x-y-z \\ x+y+z \\ z\end{array}\right]$
(i) Show that L is linear. (ii)Determine ker (L) and $\operatorname{Im}(\mathrm{L})$.
(c) Given the system of linear equations
$2 x+y=70$
$5 x+3 y=20$
(i) express it in the matrix form $A \underset{\sim}{X}=\underset{\sim}{b}$
(ii) apply the elementary matrix row reduction operations on the associated augmented matrix;
$A: I: \underset{\sim}{b}$ to reduce to the final form $I: \widehat{A}: \underset{\sim}{\widehat{b}}$ where I is the two by two identity matrix. Compute matrix products $A \hat{A}, \widehat{A} A$ and hence obtain A^{-1} and $\underset{\sim}{X}$.
(d) Let $P=\left[\begin{array}{ll}4 & 5 \\ 1 & 1\end{array}\right], R=\left[\begin{array}{ll}0 & 5 \\ 2 & 1\end{array}\right]$
(i) Determine whether or not P, or R are singular.
(ii) Compute the matrices $P R, P^{-1}, R^{-1}$ and show that $[P R]^{-1}=R^{-1} P^{-1}$.

Question2 [20marks]

(a) Given matrix $M=\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right]$
(i) Show that $M^{2}=4 I_{4 \times 4}$ and hence find M^{-1}, the inverse of M.
(ii) Show that the following vectors $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ -1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ -1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ -1 \\ -1 \\ 1\end{array}\right]$ are linearly independent.
(b) Suppose $T:[x, y, z] \rightarrow[x, x-y, y]$. Construct matrix A of linear mapping T with respect to an ordered basis for basis for R^{3}. [9 marks]

Question3 [20marks]

(a) Without using direct computation, show that $\left(\begin{array}{l}1 \\ 2 \\ -2\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ are eigenvectors of
the matrix $A=\left(\begin{array}{lrr}1 & -4 & -4 \\ 8 & -11 & -8 \\ -8 & 8 & 5\end{array}\right)$. Give the associated eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ of this matrix.
Verify that $\operatorname{trace}(A)=\lambda_{1}+\lambda_{2}+\lambda_{3}$
[12 marks]
(b) Find the coordinates vector $v_{0}=[1,1,5]$ with respect to the ordered basis $\{[1,1,0],[1,2,0],[1,2,1]\}$

Question4 [20marks]

Define a linear mapping T from vector space X into vector space Y i.e. $T: X \rightarrow Y$
(a) Explain what is meant by (i)kernel of T (ii)image of T (iii)rank of T (iv) nullity of T [8 marks]
(b) State the relationship between dimension of kernel of T and rank of T
[2marks]
(c) For matrix. $M=\left(\begin{array}{ccc}1 & 2 & -2 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$ determine adjoint of M and hence state $M^{-1} \quad$ [10marks]

Question5 [20marks]

Let $A=\left(\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4\end{array}\right)$ be a matrix of linear transformation T.
(a) Determine kernel of T
[6marks]
(b) Determine range of T
(c) State nullity and rank of T
(d) Determine which of the vectors $[-1,1,-1],[1,0,0]$ belong to the kernel of T. [6marks]

