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INSTRUCTIONS:

1. This paper consists of FIVE questions

2. Attempt any THREE questions.

3. Observe further instructions on the answer booklet.
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QUESTION 1 [20 Marks]

(a) Give an example of a Z− submodule of (Q/Z)Z which is Artinian but not
Noetherian. [3 mks]

(b) Let N be an R− submodule of M. Show that if N and M/N are noethe-
rian, then M is noetherian.

[6 mks]

(c) State and prove Schur’s Lemma [6 mks]

(d) Demonstrate that even if the ring R is commutative, the right and left
module actions of R on itself needn’t be the same. [5 mks]

QUESTION 2 [20 Marks]

(a) State the Artin- Wedderburn theorem [3 mks]

(b) Show that if R has increasing chain condition on right ideals, then any nil
right or left ideal is nilpotent [5 mks]

(c) Let N be the maximal nilpotent ideal of a right artinian ring R. Show
that R/N has no nonzero nilpotent ideals [5 mks]

(d) i) What is a Dedekind- finite ring? [1 mk]
ii) Construct a ring which is not Dedekind finite [3 mks]
iii) Demonstrate that a ring which is not Dedekind- finite is neither ar-
tinian nor noetherian. [3 mks]

QUESTION 3 [20 Marks]

(a) Explain the meaning of “Ore Condition” in a ring R. [3 mks]

(b) Let R be semiprime right noetherian. Show that every right regular ele-
ment is also left regular.

[7 mks]

(c) Demonstrate that the quotient ring of a noetherian ring needn’t be ar-
tinian. [10 mks]
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QUESTION 4 [20 Marks]

(a) Let R be a prime ring with zero divisors. Show that R has nonzero
nilpotent elements. [5 mks]

(b) With the aid of two examples, describe Brauer Groups [7 mks]

(c) Let A and B be central simple over a field F. Show that A⊗F B is central
simple over F as well [8 mks]

QUESTION 5 [20 Marks]

(a) Show that the only noncommutative finite dimensional central simple di-
vision algebra over R is the ring of quaternions H.

[11 mks]

(b) Prove the following:
i) A reduced ring is prime iff it is a domain. [5 mks]
ii) An algebraic domain is a division ring. [4 mks]
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