JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

DRAFT - EXAMINATIONS 2012/2013

SEMESTER 1 FIRST YEAR MSc EXAMS

COURSE CODE: SMA 839 COURSE TITLE: NUMERICAL ANALYSIS I

DATE : Aug, 2013 TIME: 3hrs

INSTRUCTIONS

ATTEMPT ANY THREE QUESTIONS

Show all the necessary working

Question1 [20 marks]

Given the real matrices
$$M = \begin{bmatrix} 3 & 1 & -2 & -1 \\ 2 & -2 & 2 & 3 \\ 1 & 5 & -4 & -1 \\ 3 & 1 & 2 & 3 \end{bmatrix} \qquad \underline{b} = \begin{bmatrix} 30 \\ -80 \\ 30 \\ 0 \end{bmatrix}$$

(i) Determine if M is real symmetric matrix.

(ii) Use Doolittle's method to factorize M into lower and upper triangular form M = LU.

(iii) Use the factorized form of M to solve the system of linear equations $M\underline{X} = \underline{b}$. [20 marks]

Question2 [20 marks]

Consider the system of nonlinear equations

$$f(x, y) = x^{2} + y^{2} - 1 = 0$$
$$g(x, y) = x^{2} - y^{2} + \frac{1}{2} = 0$$

(a)Derive the improved Newton's iterative scheme

$$x_{n+1} = x_n - \frac{g(x_n, y_n) + f(x_n, y_n)}{4x_n}$$
$$y_{n+1} = y_n + \frac{f(x_{n+1}, y_n) - g(x_{n+1}, y_n)}{-4y_n}$$

for the system.

[8 marks]

(b)Apply six times the improved Newton's iterative scheme to obtain the approximate solution of the system. On the same table display the results ; $n, x_n, y_n, f(x_n, y_n), g(x_n, y_n)$.

Take the initial root as $(x_0, y_0) = (1,3)$

[12 marks]

Question.3 [20 marks]

For the nonlinear equation; $x^3 - x - 6 = 0$, develop the five possible fixed-point iterative formulas. Determine explicitly which of the formulas are likely to converge to a solution of the above nonlinear equation, taking the initial solution as $x_0 = 2.5$

Question.4 [20 marks]

(a) Use the data below to construct a complete divided difference table. Determine an interpolating

	f(1.3) .	approximate	f(x) and hence	the function	p(x) for t	polynomial
[15 marks]		1.1	2	1.75	1.5	x : 1
		0.09531	.69315	.55962	.40547	f(x): 0.000
(12)	· · · · · · · · · · · · · · · · · · ·	-1	$1 f_{1} (12) \dots 1$			(\mathbf{L}) If (\mathbf{L})

(b) If f(x) = Inx, calculate error bound for f(1.3) and show that the approximation to f(1.3)

[5 marks]

satisfies this error bound.

Question.5 [20 marks]

Let the $n \times n$ matrix $A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$ have eigenvalues $\{a_{n1} = a_{n1} + a_{n2} + a_{n2} + a_{n2} + a_{n3} + a_{n$

(a) Derive an algorithm for approximation of the dominant eigenvalue $_1$ of A. Describe precisely the computation procedure. [8 marks]

(b) Consider a three by three matrix A, of linear transformation from R^3 into itself given by

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 2 & 2 & 2 \\ 4 & 2 & 5 \end{bmatrix}$$

(i) Apply six times the power method to approximate the dominant eigenvalue $\}_1$ of matrix A and v_1 the corresponding eigenvector., working with at least six decimal places.

(ii) Given that $_{m} = 2$ is also an eigenvalue of A, show that $_{1}, _{*}, _{m}$ do lie in the interval $\left[-\|A\|_{E}, \|A\|_{E}\right]$. [1 2marks]