SEMESTER 1 FIRST YEAR MSc EXAMS

COURSE CODE: SMA 839
COURSE TITLE: NUMERICAL ANALYSIS I

DATE : Aug, 2013
TIME: 3hrs

INSTRUCTIONS

ATTEMPT ANY THREE QUESTIONS

Show all the necessary working

Question1 [20 marks]

Given the real matrices $\quad M=\left[\begin{array}{cccr}3 & 1 & -2 & -1 \\ 2 & -2 & 2 & 3 \\ 1 & 5 & -4 & -1 \\ 3 & 1 & 2 & 3\end{array}\right] \quad \underline{b}=\left[\begin{array}{l}30 \\ -80 \\ 30 \\ 0\end{array}\right]$
(i) Determine if M is real symmetric matrix.
(ii) Use Doolittle's method to factorize M into lower and upper triangular form $M=L U$.
(iii) Use the factorized form of M to solve the system of linear equations $M \underline{X}=\underline{b}$. [20 marks]

Question2 [20 marks]

Consider the system of nonlinear equations

$$
\begin{aligned}
& f(x, y)=x^{2}+y^{2}-1=0 \\
& g(x, y)=x^{2}-y^{2}+\frac{1}{2}=0
\end{aligned}
$$

(a)Derive the improved Newton's iterative scheme

$$
\begin{aligned}
& x_{n+1}=x_{n}-\frac{g\left(x_{n}, y_{n}\right)+f\left(x_{n}, y_{n}\right)}{4 x_{n}} \\
& y_{n+1}=y_{n}+\frac{f\left(x_{n+1}, y_{n}\right)-g\left(x_{n+1}, y_{n}\right)}{-4 y_{n}}
\end{aligned}
$$

for the system.
(b)Apply six times the improved Newton's iterative scheme to obtain the approximate solution of the system. On the same table display the results ; $n, x_{n}, y_{n}, f\left(x_{n}, y_{n}\right), g\left(x_{n}, y_{n}\right)$.
Take the initial root as $\left(x_{0}, y_{0}\right)=(1,3)$

Question. 3 [20 marks]

For the nonlinear equation; $x^{3}-x-6=0$, develop the five possible fixed-point iterative formulas.
Determine explicitly which of the formulas are likely to converge to a solution of the above nonlinear equation, taking the initial solution as $x_{0}=2.5$

Question. 4 [20 marks]

(a) Use the data below to construct a complete divided difference table. Determine an interpolating polynomial $p(x)$ for the function $f(x)$ and hence approximate $f(1.3)$.

$x:$	1	1.5	1.75	2	1.1	[15 marks]
$f(x):$	0.000	.40547	.55962	.69315	0.09531	

(b) If $f(x)=\operatorname{In} x$, calculate error bound for $f(1.3)$ and show that the approximation to $f(1.3)$

Question. 5 [20 marks]

Let the $n \times n$ matrix $A=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right)$ have eigenvalues λ_{i} and linearly independent eigenvectors x_{i}.
(a) Derive an algorithm for approximation of the dominant eigenvalue λ_{1} of A. Describe precisely the computation procedure.
(b) Consider a three by three matrix A, of linear transformation from R^{3} into itself given by

$$
A=\left[\begin{array}{ccc}
3 & 0 & 1 \\
2 & 2 & 2 \\
4 & 2 & 5
\end{array}\right]
$$

(i) Apply six times the power method to approximate the dominant eigenvalue λ_{1} of matrix A and v_{1} the corresponding eigenvector., working with at least six decimal places.
(ii) Given that $\lambda_{m}=2$ is also an eigenvalue of A, show that $\lambda_{1}, \lambda_{*}, \lambda_{m}$ do lie in the interval $\left[-\|A\|_{E},\|A\|_{E}\right]$.

