JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE \& TECHNOLOGY UNIVERSITY EXAMINATIONS 2012/2013
 $1^{\text {ST }}$ YEAR $2^{\text {ND }}$ SEMESTER EXAMINATION FOR THE MASTER IN SCIENCE (PURE AND APPLIED MATHEMATICS)
 (KISUMU LEARNING CENTRE)

COURSE CODE: SMA 862
COURSE TITLE: PARTIAL DIFFERENTIAL EQUATIONS III
DATE: 29/8/13
TIME: 9.00-12.00 NOON
DURATION: 3 HOURS

INSTRUCTIONS

1. This paper contains SIX (6) questions.
2. Answer any FOUR questions.
3. Start each question on a fresh page.
4. All workings must be shown clearly. Write all answer in the booklet provided.

QUESTION ONE (15 marks)

a) Find the characteristics of the equation:
$3 u_{x x}+10 u_{x y}+3 u_{y y}=0$
and reduce it to the appropriate standard form and obtain the general solution. [7 marks]
b) Determine the type of the following equation:
$u_{x x}+u_{y y}=0$
and after reducing it to the hyperbolic form, deduce the formula:
$u(x, y)=\frac{1}{2} \phi(x+i y)+\frac{1}{2} \bar{\phi}(x, i y)$.
express any harmonic function u as the real part of some analytic function ϕ of complex variable $(x+i y)$. [8 marks]

QUESTION TWO (15 marks)

Give the D'Alembert's solution of the one-dimensional wave equation $u_{t t}=c^{2} u_{x x}$
where u is the dependent variable, x and t are the independent variables and c^{2} is a parameter the dimension of c being the speed.
[15 Marks]

QUESTION THREE (15 marks)

Consider the heat conduction in a thin metal bar of length L with insulated sides. Let us suppose that the end $x=0$ is held at u_{0} and the end $x=L$ is held at u_{L} degrees Celsius for all time $t>0$. Let us suppose that the temperature distribution at $t=0$ is $u(x, 0)=f(x), 0 \leq x \leq L$. Determine the temperature distribution in the bar at any position at any time $t>0$.
[15 marks]

QUESTION FOUR ($\mathbf{1 5}$ marks)

Given a Laplace's equation: $u_{x x}+u_{y y}=0$, where $u(x, y)$ represents the velocity of a fluid particle in a certain domain, determine $u(x, y)$ inside a unit circle, $x^{2}+y^{2}<1$, when its values on the circumference $x^{2}+y^{2}=1$, are prescribed.

QUESTION FIVE (15 marks)

a) Determine for what values of x and y the equation:

$$
\begin{equation*}
(1+y) u_{x x}+2(1-x) u_{x y}+(1-y) u_{y y}=u \tag{3marks}
\end{equation*}
$$

is (i) hyperbolic (ii) parabolic or (iii) elliptic
b) Solve the equation:

$$
\begin{equation*}
\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u, \text { given } u(x, 0)=6 e^{-3 x} \tag{4marks}
\end{equation*}
$$

c) Obtain the solution of the equation:

$$
\frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0
$$

by the method of separation of variables.
[8 Marks]

QUESTION SIX ($\mathbf{1 5}$ marks)

A string is stretched and fastened to two points l apart. Motion is started by displacing the string in the form
$y=a \sin \frac{\pi x}{l}$.
From which it is released at time $t=0$. Show that the displaced of any point at a distance x from one end at time t is given by

$$
y(x, t)=a \sin \frac{\pi x}{l} \cos \frac{\pi c t}{l} .
$$

[15 Marks]

