JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

UNIVERSITYDRAFT- EXAMINATIONS 2012/2013 ACADEMIC YEAR SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCES

SEMESTER TWO FIRST YEAR EXAMINATIONS

FOR THE DEGREE OF MASTER OF SCIENCE (MSc)

COURSE CODE: SMA 849 COURSE TITLE: NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

DATE : August 2013 TIME: 3hrs INSTRUCTIONS

Attempt any **three** questions

Show all the necessary working

Question 1 [20 marks]

(a) Categorize the given below equations into; elliptic, parabolic and hyperbolic partial differential equations given below.

(i)
$$x^2 \frac{\partial^2 u}{\partial x^2} + 144 \frac{\partial^2 u}{\partial y^2} = xy$$
 (ii) $1000K^4 \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ (iii) $\frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial y^2} = 0$ (iv) $\frac{\partial u}{\partial t} + t \frac{\partial^2 u}{\partial t \partial x} = \frac{\partial^2 u}{\partial x^2}$ [10 marks]
(b) Let $f(x, t, u, u_1, u_2, u_3, \dots, u_m) = 0$ be an m^{th} order partial differential equation and $F(u_{ij}) = 0$ describe a finite difference scheme to it.

Describe the conditions under which the numerical scheme will converge to the unique the solution of the given partial differential equation [10 marks]

Question2 [20marks]

Given the wave equation

$$\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}, \qquad 0 < x < 1, \quad t > 0$$

subject to boundary conditions u(0,t) = u(1,t) = 0 for t > 0

and initial conditions $u(x,0) = \sin(fx)$, $u_t(x,0) = 0$, 0 < x < 1, t = 0. $h = \Delta x$, t = 0.

(a) Construct the explicit finite difference scheme to it.

(b) Express the resulting finite difference equation to the initial boundary value problem in a molecular form. [2 marks]

(c) State the stability of the explicit finite difference scheme in part (i) above. [2 marks]

(d) Compute the approximations $U_{i,j}$; $j = 1(first - time \ level)$, i = 0,1,2,3,4,5. to the exact solutions

 $u(x_i, t_j)$ using $h = \Delta x = 0.2$, $k = \Delta t = 0.05$ $h = \Delta x$. On the same table display values of

$$j, i, U_{i,j}, u(x_i, t_j), |u(x_i, t_j) - U_{i,j}|$$
 where $u(x, t) = \sin(fx)\cos(2ft)$. Comment on the accuracy of the results obtained. [10 marks]

results obtained. Question3 [20marks]

On the square $D = \{(x, y): 0 \le x \le l, 0 \le y \le l\}$ consider the Dirichlet problem for the Poisson's equation,

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y) \text{ in } D$$
$$u = g(x, y) \text{ on } S$$

(a) Use finite difference method with equal mesh spacing $h = \Delta x = \Delta y = \frac{l}{4}$, defined on *D* to discretize the Dirichlet problem, assuming . g(x, y) = 0 on *S*. [15 marks]

(b)Show that difference scheme takes the form $A\underline{U} = \underline{B} : A_{9\times9}real$, symmetric matrix, $U = U_{ij}$, $B = B_{ij}$; i, j = 1, 2, 3, 4. Deduce that the numerically computed solution \underline{U} is unique [5 marks]

[6 marks]

Question4 [20marks]

(a) Construct an explicit finite-difference scheme as applied to the heat -diffusion equation $\left(a \right)$

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \qquad 0 \le x \le 1, \qquad 0 < t < 0.5$$

subject to $u(0,t) = u(1,t) = 0 \qquad 0 < t < 0.5$
and $u(x,0) = x(1-x) \qquad 0 \le x \le 1.$ [5 marks]

(b)Obtain a molecular formula for problem (a) above applied to the solution grid over region $W = \{(x,t): 0 \le x \le 1, 0 \le t \le 0.5\}$ with $r = k/h^2$; $h = \Delta x = 0.2$; $k = \Delta t = 0.01$.

State the stability of the molecular formula employed and hence compute the numerical solutions U_{ij} ; for the three time levels j = 1, 2, 3. [15 marks]

Question5 [20marks]

Consider the two dimensional -diffusion equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}, \qquad 0 \le x \le 4 \quad , 0 \le y \le 4 \quad , \qquad t > 0$$

subject to u(0, y, t) = u(4, y, t) = u(x, 0, t) = u(x, 4, t) = 1 for t > 0

and u(x, y, 0) = xy, t = 0.

Construct an explicit finite difference schemes to it.

State the stability of the explicit finite difference schemes [14 marks]