COLLEGE

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE \&BACHELOR OF EDUCATION (SCIENCE)

PHYS 313: ELECTRICITY AND MAGNETISM II

STREAMS: B.SC., B.ED (SC) Y3S1
TIME: 2 HOURS
DAY/DATE: MONDAY 17/12/2012
8.30 A.M - 10.30 A.M.

INSTRUCTIONS:
Answer question 1 and any other 2 questions.
Question 1 contains 40 Marks and the other questions 15 marks each.

1. (a) Define: (i) the electric field of a surface
(ii) the periodic time of an a.c generator
(iii) the effective value of an a.c
(b) An alternating current completes 5 cycles in 8 ms . What is its frequency?
(c) A supply has a mean value of 150V. Determine
(i) its maximum value [2 marks]
(ii) its rms value [2 marks]
(d) Define a phasor as used in electricity. [1 mark]
(e) An alternating voltage is given by $\mathrm{V}=282.8 \operatorname{Sin} 314 \mathrm{t}$ volts.

Find: (i) the r m s voltage [2 marks]
(ii) the frequency of the voltage [2 marks]
(iii) the instantaneous value of the voltage when $\mathrm{t}=4 \mathrm{~ms}$
[2 marks]
(f) Define the following single phase a.c circuits:
(i) purely resistive a.c circuit [1 mark]
(ii) purely inductive a.c circuit [1 mark]
(iii) purely capacitive a.c circuit [1 mark]
(g) A capacitor has a reactance of 40Ω when operated on a 50 Hz supply. Determine the value of its capacitance.
(h) State Gauss's law.
(i) Write the four Maxwell's equations.
[4 marks]
(j) State Faraday's law of electromagnetic induction.
(k) Apart from the Maxwell-Wien a.c bridge circuit, state two other a.c bridge circuits.
[2 marks]
(1) A Maxwell-Wien bridge circuit ABCD has the following arm impedances. $\mathrm{AB}, 250 \Omega$ resistance; $\mathrm{BC}, 2 \mu \mathrm{~F}$ capacitor in parallel with a $10 \mathrm{k} \Omega$ resistor, CD , 400Ω resistor; DA, unknown inductor L in series with resistance R. Determine the values of L and R if the bridge is balanced.
[8 marks]
2. (a) Define:
(i) Polarization of the dielectric of a capacitor
(ii) Dielectric strength
(iii) Filters [3 marks]
(b) Describe in detail low pass filters.
(c) In a series R-L circuit, the p.d across the resistance R is 12 V and the p.d across the inductance L is 5 V .

Find:
(i) The supply voltage
[3 marks]
(ii) The phase angle between current and voltage [3 marks]
3. (a) Starting with Gauss's law, calculate the electric field due to an isolated point charge.
(b) What is the electric flux through a sphere that has a radius of 2.5 m and carries a charge of $4 \mu C$ at its centre? Take $K=9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$?
(c) In a R - C series a.c circuit, a resistor of 50Ω is connected in series with a capacitor of $90 \mu F$. Calculate,
(i) the impedance [3 marks]
(ii) the current taken from a $240 \mathrm{~F}, 50 \mathrm{~Hz}$ supply. [2 marks]
4. (a) What is a R-L-C circuit?
[1 mark]
(b) In a L-C parallel a.c circuit, a pure inductance of 240 mH is connected in parallel with a $50 \mu F$ capacitor and the network is connected to a $100 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Determine:
(i) the branch currents
(ii) the supply current
(iii) the circuit impedance
(c) Explain how temperature affects capacitor dielectrics.
[2 marks]
5. (a) Define: (i) Conductance of transmission lines [1 mark]
(ii) Wavelength on a transmission line
[1 mark]
(b) A transmission line has an inductance of $8 \mathrm{mH} / \mathrm{loop} \mathrm{km}$ and a capacitance of $0.004 \mu F / \mathrm{kg}$. Determine for a frequency of operation of 0.5 kHz
(i) the phase delay
[3 marks]
(ii) the wavelength on the line
[3 marks]
(iii) the velocity of propagation of the signal in m / s
[2 marks]
(c) Define a resonant circuit and state its significance in communication.
[2 marks]
(d) A coil having a resistance 20Ω and inductance of 90 mH is connected in series with a $30 \mu \mathrm{~F}$ capacitor across a 240 V a.c supply. At what frequency does resonance occur?
[3 marks]

