CHUKA

UNIVERSITY

COLLEGE

UNIVERSITY EXAMINATIONS

THIRD YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE / BACHELOR OF EDUCATION SCIENCE

PHYS 314: MATHEMATICAL PHYSICS 1

STREAM: BSC. B.ED SICE Y3S1

TIME: 2 HOURS

DAY/DATE: TUESDAY 18/12/2012

8.30 A.M. - 10.30 A.M

INSTRUCTIONS:

Answer question ONE and any other TWO questions Use of calculative & SMP tables are allowed.

1.	(a)	Define a differential equation and give an example using a physical phenomenon. [3 Marks]	
	(b)	State the three main coordinate systems and give the relationship betwe candidates in the three systems.	en the [6 Marks]
	(c)	Define the legendre of polynomial, the Bessel functions the gamma and examples of their applications in physics.	d give [6 Marks]
	(d)	Differentiate between eigenvalues and eigerfunction.	[4 Marks]
	(e)	Write the sturn – liosville equation.	[2 Marks]
	(f)	State the cauchys theorem.	[2 Marks]
	(g)	List the six main techniques of integrations.	[3 Marks]
	(h)	Differentiate between a complex number and a complex variable.	[3 Marks]
	(i)	What is a parametric equation?	[1 Mark]
2.	(a)	Evaluate $\int_0^t 2x \ e^{3x} dx$	[8 Marks]

(b) An electrical circuit contains inductance L and resistance R connected to a constant voltage source E. the current is given by the differential equation.

$$E - L \frac{di}{dl} = Ri$$

Where L and R are constants. Find the current in terms of time t given that when

3.

- (a) A particle moves on the curve $x = 2t^2$, $y = t^2 4t$, $\mathbb{Z} = 3t 5$. where t is the time. Find the components of velocity and acceleration at the time t=1 in the direction. $\mathbf{j} = 3\mathbf{j} + 2\mathbf{k}$. [10 Marks]
 - (b) Show that for all values of θ , real or complex

$$\cos\theta = \frac{e^{i\theta} + e^{-1\theta}}{2}$$
 and $\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$. [10 Marks]

4. (a) Use logarithmic differentiations to differentiate : $y = \frac{4e^{-2x} \sec x}{\left(x^2 + \frac{1}{2}\right)^{\frac{3}{2}}}$ [10 Marks]

(b) If
$$\mathbb{Z} = f(x, y)$$
 and $\mathbb{Z} = x \cos(x + y)$

Find:
$$\frac{\partial^2 \mathbb{Z}}{\partial x^2}$$
 and $\frac{\partial^2 \mathbb{Z}}{\partial y^2}$

Hence show that:

$$\frac{\partial^2 \mathbb{Z}}{\partial x \partial y} = \frac{\partial^2 \mathbb{Z}}{\partial y \ \partial x}$$
[10 Marks]

5. Show that the Laplace equation is given by:

$$\nabla^2 \phi = \frac{1}{p} \frac{\partial}{\partial p} \left(p \frac{\partial \phi}{\partial p} \right)' + \frac{1}{p^2} \frac{\partial^2 \phi}{\partial \phi^2} + \frac{\partial^{2\phi}}{\partial z^2} = 0 \text{ in cylindrical coordinates.} \qquad [20 \text{ Marks}]$$