COLLEGE

UNIVERSITY EXAMINATIONS

THIRD YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE / BACHELOR OF EDUCATION SCIENCE

PHYS 314: MATHEMATICAL PHYSICS 1

STREAM: BSC. B.ED SICE Y3S1
TIME: 2 HOURS
DAY/DATE: TUESDAY 18/12/2012
8.30 A.M. - 10.30 A.M

INSTRUCTIONS:

Answer question ONE and any other TWO questions

Use of calculative $\&$ SMP tables are allowed.

1. (a) Define a differential equation and give an example using a physical phenomenon.
[3 Marks]
(b) State the three main coordinate systems and give the relationship between the candidates in the three systems.
[6 Marks]
(c) Define the legendre of polynomial,the Bessel functions the gamma and give examples of their applications in physics.
(d) Differentiate between eigenvalues and eigerfunction.
(e) Write the sturn - liosville equation.
(f) State the cauchys theorem.
(g) List the six main techniques of integrations.
(h) Differentiate between a complex number and a complex variable.
(i) What is a parametric equation? [1 Mark]
2. (a) Evaluate $\int_{0}^{\prime} 2 x e^{3 x} d x$ [8 Marks]
(b) An electrical circuit contains inductance L and resistance R connected to a constant voltage source E . the current is given by the differential equation.
$E-L \frac{d i}{d l}=R i$
Where L and R are constants. Find the current in terms of time t given that when
$\mathrm{t}=0, \quad \mathrm{i}=0$.
[12 Marks]
3. (a) A particle moves on the curve $x=2 t^{2}, y=t^{2}-4 t, \mathbb{Z}=3 t-5$. where t is the time. Find the components of velocity and acceleration at the time $t=1$ in the direction. $\boldsymbol{j}=3 \boldsymbol{j}+2 \mathbf{k}$.
[10 Marks]
(b) Show that for all values of θ, real or complex

$$
\begin{equation*}
\cos \theta=\frac{e^{i \theta}+e^{-1 \theta}}{2} \text { and } \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i} . \tag{10Marks}
\end{equation*}
$$

4. (a) Use logarithmic differentiations to differentiate :

$$
\begin{equation*}
y=\frac{4 \epsilon^{-2 x} \sec x}{\left(x^{2}+\frac{1}{2}\right)^{3 / 2}} \tag{10Marks}
\end{equation*}
$$

(b) \quad If $\mathbb{Z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ and $\mathbb{Z}=x \cos (x+y)$

Find: $\frac{\partial^{2} \mathbb{Z}}{\partial x^{2}}$ and $\frac{\partial^{2} \mathbb{Z}}{\partial y^{2}}$
Hence show that:

$$
\frac{\partial^{2} \mathbb{Z}}{\partial x \partial y}=\frac{\partial^{2} \mathbb{Z}}{\partial y \partial x}
$$

[10 Marks]
5. Show that the Laplace equation is given by:
$\nabla^{2} \emptyset=\frac{1}{p} \frac{\partial}{\partial p}\left(p \frac{\partial \phi}{\partial p}\right)^{\prime}+\frac{1}{p^{2}} \frac{\partial^{2} \emptyset}{\partial \phi^{2}}+\frac{\partial^{2}}{\partial \mathbb{Z}^{2}}=0$ in cylindrical coordinates.
[20 Marks]

