

COLLEGE

UNIVERSITY EXAMINATIONS

THIRD YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE (GENERAL) & BACHELOR OF EDUCATION (SCIENCE)

PHYS 317: BIOPHYSICS

STREAMS: B.SC. (GEN), B.ED (SC) Y3S1 TIME: 2 HOURS

DAY/DATE: WEDNESDAY 19/12/2012 8.30 A.M – 10.30 A.M.

INSTRUCTIONS:

The paper contains 5 questions.

Answer question One and any other two questions. Question One contains 40 marks and the other questions contain 15 marks each.

- 1. (a) State
 - (i) Four characteristics of beta (β) particles.

[2 marks]

(ii) Four applications of X-rays.

[2 marks]

- (b) Find the wavelength of X-rays of energy 7.2×10^6 J. Take $h = 6.6 \times 10^{-34}$ J.s. [3 marks]
- (c) Two photons of wavelength 20mm and 1000mm are incident on a fractured human arm.
 - (i) Find the energy dissipated by each of them.

[4 marks]

- (ii) Which of the two would you recommend for taking the picture of the fractured bone? Give reasons to support your answer. [3 marks]
- (d) Describe how a Fountain pen dosimeter is used for measurement of radiation intensities. [5 marks]
- (e) (i) A student using a fountain-pen dosimeter recorded deflections between the goldfoils as 40° and 70° for emissions A and B respectively from a radioactive element. Identify the emissions giving reasons for your answer. [4 marks]

(ii)	If the initial angle between the gold foils for emission A is scale of the dosimeter is 2 emissions per degree, find the n radioactive emissions for A.			
List five advantages of using a G-M counter for measuring radiation intensities. [5 marks]				
By using a ray diagram of the eye, show the interfaces in the eye where refraction occurs and state the values of the refractive indices of those interfaces. [6 marks]				
Defi	ne the following:			
(i) (ii) (iii)	Loudness of sound Pitch of sound A decibel	[3 marks]		
Explain the following terms as used in sound				
(i) (ii)	Masking Beats			
(iii)	Dissonance	[6 marks]		
Two tuning forks are vibrated together such that they produce sounds of frequencies 59Hz and 72 Hz respectively. Calculate				
(i)	their beat frequency	[2 marks]		
(ii)	their beat wavelength if speed of sound 340mls.	[2 marks]		
(iii)	their beat energy. Take $h = 6.6 \times 10^{-34} \text{ J.s}$	[2 marks]		
During the process of diffusion through cell membranes, 2000 J of energy is dissipated in an organism of mass 200g. If the initial body temperature of the organism is 20 °C and the average body specific heat capacity of the organism is 3000 JKg ⁻¹ K ⁻¹ , find the final body temperature of this organism. [3 marks]				
State three properties of sound. [3 marks]				
D' '		r2 1 1		

(a)

(f)

(g)

(h)

(a)

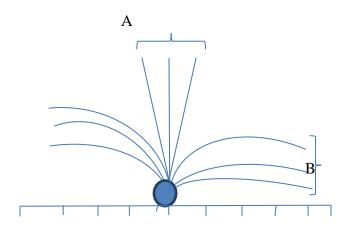
(b)

(c)

Q3.

Q2.

- (b) Distinguish between sonic sound, ultrasound, and infrasound. [3 marks]
- The human ear detects sounds of frequency 1000 Hz corresponding to an intensity $1 \times 10^{-12} \text{ W/m}^2$. The loudest sounds the ear can tolerate at this (c) frequency correspond to an intensity of about 1.0 W/m². Determine the pressure amplitude and displacement amplitude associated with these two limits.


[6 marks]

(d) Identify the radiations labeled A and B giving reasons for your answers, if they are in magnetic field.

(c)

(d)

[3 marks]

4. (a) Discuss how the following factors affect the rate of diffusion.

(i)	Molecular size	[2 marks]
(ii)	Shape of the molecules	[2 marks]
(iii)	Viscosity of the solvent	[2 marks]

- (b) With the help of a schematic diagram of an X-ray tube, explain how X-rays are produced. [6 marks]
- (c) An uncomfortably loud sound having an intensity of 0.54 W/m² is played in amatatu. Find the maximum displacement of the molecules of air by the sound wave if its frequency is 800 Hz. Take the density of air to be 1.29kg/m² and the speed of sound to be 340m/s. [3 marks]
- 5. (a) Define radiation dose and state its unit of measure. [2 marks]
 - (b) A beam of alpha particles is directed at a tumor on a person's leg and deposits 0.2J of energy in each kilogram of flesh. The quality factor of these particles is 12 Sv/Gv.

(i) (ii)	Find the dose in Gy. Find the effective dose in Sieverts (Sv)	[3 marks] [3 marks]
State and explain two clinical uses of UV light.		[4 marks]
How is the eye related to a photographic camera?		[3 marks]