COMP 121: DISCRETE STRUCTURES
 DAY: WEDNESDAY
 TIME: 2:00-4:00PM
 DATE: 15/4/2015
 STREAM: Y1S2

INSTRUCTIONS:
$>$ Part-A is compulsory, have30 marks and from Part-B, You can attempt any two questions. Each question has 20 marks.

PART-A

QUESTION 1 (30 Marks)

a) State the following:
(i) The principle of extension. 1 Mark
(ii) The principle of abstraction. 1 Mark
b) Rewrite the following statements using set notation:
(i) the element 1 is not a member of A 1 Mark
(ii) A is a subset of $\mathrm{B} \quad 1$ Mark
c) Simplify $\frac{(n+1)!}{(n-1)!} \quad 4$ Marks
d) Construct logic networks for the following Boolean expressions, using AND gates, OR gates, and inverters. $\quad(\bar{x}+\mathrm{y}) \mathrm{z}$ 3 Marks
e) A group consists of nine men and six women. Find the number m of committees of six that can be selected from the class.

2 Marks
f) The relation R on a set is represented by
$\mathrm{M}_{\mathrm{R}}=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$
Find out whether R is reflexive, symmetric or antisymmetric?
6 Marks
g) Draw the complete bipartite graphs $\mathrm{K}_{2,3}$

2 Marks
h) Draw the relation graph for the following relations
(i) $\mathrm{R}=\{(1,1),(1,3),(2,1),(2,3),(2,4),(3,1),(3,2),(4,1)\}$ on the set $\mathrm{X}=\{1,2,3,4\}$
(ii) $S=\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$ on the set $Y=\{1,2,3\} \quad 3$ Marks
i) Use a K-map to find the minimal form for each of the following complete sum-ofproducts Boolean expressions and draw the logic circuit diagram.
$\mathrm{E}_{1}=\mathrm{ABC}+\mathrm{AB} \overline{\mathrm{C}}+\mathrm{A} \overline{\mathrm{B}} \mathrm{C}+\overline{\mathrm{A}} \mathrm{BC}+\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C}$
6 Marks

PART B

QUESTION 2(20 Marks)

a) Consider the following sets:
(I) $X=\{x: x$ is an integer, $x>1\}$
(II) $\mathrm{Y}=\{\mathrm{y}: \mathrm{y}$ is an positive integer, divisible by 2$\}$
(III) $\mathrm{Z}=\{\mathrm{z}: \mathrm{z}$ is an even number, greater than 2$\}$

Whichof them are subset of $w=\{2,4,6 \ldots \ldots$.$\} ?$
3 Marks
b) Determine the power set $\mathrm{P}(\mathrm{A})$ of $\mathrm{A}=\{1,3,5\} \quad 4$ Marks
c) Draw a Venn diagram of sets A, B, C where A and B have elements in common, B and

C have elements in common, but A and C are disjoint.
d) Construct the truth table for $(\sim p) \vee(\sim q)$

4 Marks
e) Suppose $U=\{1,2,3, \ldots \ldots . .8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$, and $C=\{3,4,5,6\}$. Find
(i) $(A \cup B) \cup C$ and
(ii) $\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})$
4 Marks
f) Determine which of the following sets are finite.
(i) $\mathrm{A}=\{$ seasons in the year $\}$
(ii) $\mathrm{B}=\{$ state in the union $\}$
(iii) $\mathrm{C}=\{+$ ve integers less than 1$\}$

3 Marks

QUESTION 3(20 Marks)

a) Suppose $U=\{1,2,3, \ldots \ldots . .8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$, and $C=\{3,4,5,6\}$.

Find (i) A^{c}
(ii) $\mathrm{A} \backslash \mathrm{B}$
(iii) $\mathrm{B} \backslash \mathrm{B}$

4 Marks
b) Draw the graph with the following adjacency matrix.

\boldsymbol{a}
\boldsymbol{a}
\boldsymbol{b}
\boldsymbol{c}
\boldsymbol{d}

0 \& 0 \& 0 \& 1

0 \& 0 \& 2 \& 0

0 \& 2 \& 0 \& 0

1 \& 0 \& 0 \& 1\end{array}\right]\)
c) Construct the truth table for $p \wedge(p \vee q)$

4 Marks
d) Prove the absorption laws: $\mathrm{A} \cup(\mathrm{A} \cap \mathrm{B})=\mathrm{A}$

4 Marks
e) Find the number of distinct permutations that can be formed from all the letters of each word "EXAMINATION"

2 Marks
g) Let $A=\{1,2,3\}$ and $B=\{a, b\}$. Find $A \times B$

4 Marks

QUESTION 4(20 Marks)

a) Find the adjacency matrix A of the graph G in figure.

4 Marks
b) One hundred students were asked whether they had taken courses in any of the three areas, Computer, Physics, and History. The results were:
26 had taken Computer
22 had taken Physics
33 had taken History
6 had taken Computer and Physics

8 had taken Computer and History
5 had taken History and Physics and
2 had taken all the three courses.
(i) Draw a Venn diagram that will show the results of the survey.
(ii) Determine the number of students who had taken exactly ONE of the courses.
(iv) Number of Students who had taken exactly TWO of the courses.

1 Mark
1 Mark
2 Marks
3 Marks
5 Marks

QUESTION 5(20 Marks)

a) Draw the logical networks for
(i) $(\mathrm{a} . \bar{b})+(\bar{a} . \mathrm{b})$
(ii) $(\mathrm{a}+\mathrm{b}) .(\mathrm{c}+\mathrm{d})$

4 Marks
b) Consider the following three relations on the set $\mathrm{A}=\{1,2,3\}$:
$\mathrm{R}=\{(1,1),(1,2),(1,3),(3,3)\}$
$\mathrm{S}=\{(1,1),(1,2),(2,1),(2,2),(3,3)\}$
$\mathrm{T}=\mathrm{AXA}$
(i) Determine which of the relations are reflective.
(ii) Determine which of the relations are symmetric.
(iii) Determine which of the relations are transitive.

3 Marks
c) Find the minimal form expression of K-Map given below:-

d) Prove the associative law: $(\mathrm{p} \wedge \mathrm{q}) \wedge \mathrm{r} \equiv \mathrm{p} \wedge(\mathrm{q} \wedge \mathrm{r})$

2 Marks
4 Marks
e) Draw the K-Map of the following expression. $Z=f(A, B, C)=A B C+A \bar{B} \bar{C}+\bar{A} \bar{B} \bar{C}+$
$A B \bar{C}$
2 Marks
f) Suppose the truth table of an expression is $T=[A=00001111, B=00110011, C=$ 01010101, L= 11101001
(i) Find out the Expression of given truth table.
(ii) Draw the K-Map and find the minimal form of this.

5 Marks

